Open Journal of g |
Mathematical Analysis PER Feeie

Atrticle

Existence and uniqueness results for nonlinear hybrid
implicit Caputo-Hadamard fractional differential
equations

Abdelouaheb Ardjouni’?*, Adel Lachouri? and Ahcene Djoudi?

1 Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria.

2 Applied Mathematics Lab, Faculty of Sciences, Department of Mathematics, University of Annaba, P.O. Box 12,
Annaba 23000, Algeria.

*  Correspondence: abd_ardjouni@yahoo.fr

Received: 24 September 2019; Accepted: 28 December 2019; Published: 31 December 2019.
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1. Introduction

he concept of fractional calculus is a generalization of the ordinary differentiation and integration
T to arbitrary non integer order. Fractional differential equations with and without delay arise from
a variety of applications including in various fields of science and engineering such as applied sciences,
practical problems concerning mechanics, the engineering technique fields, economy, control systems, physics,
chemistry, biology, medicine, atomic energy, information theory, harmonic oscillator, nonlinear oscillations,
conservative systems, stability and instability of geodesic on Riemannian manifolds, dynamics in Hamiltonian
systems, etc. In particular, problems concerning qualitative analysis of linear and nonlinear fractional
differential equations with and without delay have received the attention of many authors, see [1-17] and

the references therein.
Recently, Ahmad and Ntouyas [3] discussed the existence of solutions for the hybrid Hadamard
differential equation

{ "D (géfi?t))) =f(tx(t), te[1,T],

Hpex(t ’tzl =1,

where HD* is the Hadamard fractional derivative of order 0 < a < 1. By employing the Dhage fixed point
theorem, the authors obtained existence results.

In [4], Ardjouni and Djoudi studied the existence, interval of existence and uniqueness of solutions for
nonlinear implicit Caputo-Hadamard fractional differential equations with nonlocal conditions

O (x (1) = f (3 (1), 05 (x (1)), t € [1,T],
x(1)+8 () =1,

where f: [1,T] xR xR — Rand g : C([1,T],R) — R are nonlinear continuous functions and ©{ denotes the
Caputo-Hadamard fractional derivative of order 0 < a < 1.
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Motivated by these works, we study the existence, interval of existence and uniqueness of solution for the
following nonlinear hybrid implicit Caputo-Hadamard fractional differential equation

(tx(t)) _ x(H)—f(Lx()
) = (bx 0,0 (GEE) ) re LT, (1)

{ th (x(t)

G
x(1) =63 (Lx(1) + £ (Lx(1)), 6 € R,

where f : [I,T] xR - R, ¢ : [, T] xR — R\{0} and k : [1,T] x R x R — R are nonlinear continuous
functions and D{ denotes the Caputo-Hadamard fractional derivative of order 0 < a < 1. To show the
existence, interval of existence and uniqueness of solutions, we transform (1) into an integral equation and
then use the Banach fixed point theorem. Further, by the generalization of Gronwall’s inequality we obtain the
estimate of solutions of (1).

2. Preliminaries

In this section, we present some basic definitions, notations and results of fractional calculus [2,7,12,15]
which are used throughout this paper.

Definition 1 ([12]). The Hadamard fractional integral of order & > 0 for a continuous function x : [1, +00) — R

is defined as .
1 t AR ds
~K _ _
Jlx(t)—r(lx)/l (logs> x(s) 5 , > 0.

Definition 2 ([12]). The Caputo-Hadamard fractional derivative of order a for a continuous function x : [1, +c0) —
R is defined as

n—a—1
’i‘x(t):r(nl_tx)/lt(log;> 5"(x)(s)§,n—1<a<n

where " = (t%)n, n=[a]+1.
Lemma 3 ([12]). Leta > 0, n € N. Suppose x € C" 1 ([1, +00)) and 6(") x exists almost everywhere on any bounded
interval of [1,+00). Then
n=1 s(k) (1) k
~K 14 — _ .
i () = x(0) - ¥ iy o)
In particular, when 0 < a < 1, 37 [D{x] (t) = x(t) — x(1).

Lemma 4 ([12]). Forall y > 0 and v > —1, then

1 gt A 0. T@+1) ”
W/l (logs) (logs)’ ds = m(logtﬂ”r :

The following generalization of Gronwall’s lemma for singular kernels plays an important role in
obtaining our main results.

Lemma 5 ([15]). Let x : [1, T] — [0, 00) be a real function and w is a nonnegative locally integrable function on [1, T).
Assume that there is a constant a > 0 such that for 0 < a <1

x() < w(t) + u/lt (logi)al x(s)E.

S

Then, there exists a constant k = k() such that

x(t) < w(t) +ka /; (logi)lxl w(s)@/

S

for every t € [1,T).
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3. Main results

In this section, we give the equivalence of the initial value problem (1) and prove the existence,interval of
existence, uniqueness and estimate of solution of (1).
The proof of the following lemma is close to the proof Lemma 6.2 given in [7].

Lemma 6. If the functions f : [I,T] xR — R, g : [1,T] x R — R\ {0} and h : [1,T] x R? — R are continuous,
then the initial value problem (1) is equivalent to the nonlinear fractional Volterra integro-differential equation

t a1 —
w0 = Flor) +os(er o)+ ST [ (og L) (s, op (HLLESE) ) 2,

w

fort e [1,T].

Theorem 7. Let T > 0. Assume that the continuous functions f : [1,T] x R — R, ¢ : [1,T] x R — R\ {0} and
h:[1,T] x R? — R satisfy the following conditions
(H1) There exists My € R such that

8 (L u)| < Mg,

forallu € Rand t € [1,T].
(H2) There exists M, € R such that
| (t,u,0)| < My,

forallu,v € Randt € [1,T).
(H3) There exist Ky, Ky, K3 € RT,Ky € (0,1) with Ky 4+ K3 |0| € (0,1) such that

[f(bu) = fLu)] < Kifu—ol,
g (tu) —g(tu")| < Kyfu—of,

and
|h(t,u,0) —h(t,u*,0")| < Kz |u—u*|+ Ky |o—20",

forall u,v,u*,v* € Rand t € [1,T].

Let
mind T oo (L= (K1 + K2 [0)) (1= Ky)T (2 1)) | *
e {T' p< (MyKs (1 = Ky) + MgKs) ) } )

Then (1) has a unique solution x € C ([1,b],R).

Proof. Let

W (X —F X)) _ 4 ) )
®1< g (£ x(1) >— 2 (8), x(1) =0g (L, x(1))+ f (L, x(1)),

then by Lemma 6, we have
t a—1 3
) = £ (1300 + 0500, () + ST [ (1og 1) 209 T,

where
zy (£) =h(t, f(t,x(t))+0g(t,x(£) +g(t,x(t)) Tzx () ,2x (1)) .

That is x (t) = f(t,x(t)) +6g(t,x (t)) + g (¢t x(t)) I{zx (t). Define the mapping P : C([1,b],R) —
C([1,b],R) as follows

S

a—1
(P5) (1) = £ (1, (0) + 0506, (0) + Sl [ (1og 1) 200 T
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It is clear that the fixed points of P are solutions of (1). Let x,y € C ([1,b],R), then we have

. x—1
(Px) ()= (Py) ()] = ‘f(t,x<t>>+eg<t,x<t>>+g(;'(’;§m [ (lgl) =T

S

Y a—1
1 () + 0300,y 1) ~ SO [ (10g 1)y (9 F

£ (x(0) — £ (Y] + 161 lg(t,x () — 8(t,y (1)
t a—1
gt =gy e [ (l08]) OIS

¢ a—1 "
gty O i [ (182) e 201 T
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[

and
|h(tx(t),zx (£)) = h (t, x(t), 2, ()]
Kz |x(t) —y(£)| + Ky |22 (£) — 2y (1)

K3
S k() — y(0). @

IN A

IN

By replacing (4) in the inequality (3), we get
t
(P (0= (P (O] < Ku () ~ )]+ Kalol ()~ )]+ Ka ()~ v )| oty [ (og )

M K t P\t ds
TR . (logs) x(s) — y()] &

My, (log t)*

% (Mg “"g”“) =yl

< _ _

< Kiflx—yl+K <|9’+ T(x+1) >||x yH+1—K4 [(a+1)
M¢K3\ (logt)"

< g —yil-

Since t € [1,b], Then
[Px —Py[| < Bllx —yll,

where

MK3\ (logh)®
1-K ) T(at 1)

That is to say the mapping P is a contraction in C ([1, b],R). Hence, by the Banach fixed point theorem, P
has a unique fixed point x € C ([1,b],R). Therefore, (1) has a unique solution. []

:B =K; + Ky |9‘ + (MhK2+

Theorem 8. Assume that f : [1,T] xR = R, g:[1,T] x R — R\ {0} and h : [1,T] x R? — R satisfy (H1), (H2)
and (H3). If x is a solution of (1), then

(1—Ky) (1— (K + Kz |8]) T (x +1) + MK3K (log T)* Mg Qs (log T)"
=@l = ( AR (0= (K T K ) T+ D) )<Ql+'9'QZ+<1—g1<4>r<a+1>>'

where Q1 = sup |f (t,0)], Q2 = sup [g(t,0)], Q3 = sup |h(t0,0)|and K € RY is a constant.
te[1,T] te(1,T] te[1,T]
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Proof. Let

w (2= FEB)N ~
©1< g (t,x(1)) )—Zx<t>fX<1)—9g(1,x<1))+f(1,x(1)),

then by Lemma 6, x(t) = f (t,x(t)) + 0g(t,x (t)) + g (£, x (t)) I}z« (t). Then by (H1), (H2) and (H3), for any
t € [1, T] we have
[ (O] < [f (& x(E)] +16] [ (£ x (£))] + [g (8, x ()] [T12x (£)]

x(
< f(x(t) = f(E0)[+If (£0)[ + 0] (|g(t x (t) — g(t,0)[ + [g(t,0)]) + Mg [F{zx ()]
< Ky lx ()] + Q1+ 0] (Ko [x (£)] + Q2) + MgT7 |zx ()]

On the other hand, for any t € [1, T| we get

|z ()] = |l (£, x (£) , 22 (1)) [ (8, x (), 2x (£)) = B (£,0,0)| + [ (£,0,0)]
Ks |x (8)[ + Ky |2 (£)[ + |1 (£,0,0)]

K3 Q3
1-K, |x (8)] + - K

IN A

IN

Therefore

|MMsmmo+gﬂM&xw+@HMﬁ(Kéwmu Q3).

1-Kq 1- K,
Thus
_ ; M;Qs (log T)* MKs
R e (& A e (e e y)

x (31 {(1 = (K1 +K2[0])) [x (£)[}) -

By Lemma 5, there is a constant K = K («) such that

(1-Ky)T(a+1) (1-Ky) (1 - (K1 +Kz200])) T (x +1)

M,Q3 (log T)"
X <Q1+|9|Q2+ (1—K4)1"(D¢+1)>

. (A=K) (- (K +K0])T (x+1) + MgK3K (log T)"
- (1—Kyg) (1= (K +K2[0])) T (x +1)

M¢Qs (log T)"
X <Q1+ 101Q2 + (1—K4)F(oc+1)> '

M log T)* MK3K (log T)*
(1= (K +Ka0)) 5 ()] < Qi+ [o]Qy+ —r2lo8T) ( <KsK (log T) )

Hence

(1—Ky) (1— (K + Kz |8]) T (« +1) + MK3K (log T)* Mg Qs (log T)"
S ( oK) 0 (% + K0 T 1) )(Qr”“Qf%mfknrw+n>'

This completes the proof. [
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