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Abstract: Mathematical modeling of infectious diseases has progressed dramatically over the past four
decades and continues to flourish at the nexus of mathematics, epidemiology, and infectious diseases
research. Now recognized as a valuable tool, mathematical models are being integrated into the public
health decision-making process more than ever before. In this article, a mathematical model of Ebola virus
which is named as SEIVR (susceptible, exposed, infected, vaccinated, recovered) model is considered. First,
we formulate the model and present the basic properties of the proposed model. Then, basic reproductive
number is obtained by using the next-generation matrix approach. Furthermore, the sensitivity analysis of
R0 is also discussed, all the endemic equilibrium points related to the disease are derived, a condition to
investigate all possible equilibria of the model in terms of the basic reproduction number is obtained. In last,
numerical simulation is presented with and without vaccination or control for the proposed model.

Keywords: Ebola virus, sensitivity analysis, reproduction number, formulation of model, endemic
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1. Introduction

2 4 July 2018 marks the end of the ninth outbreak of Ebola in the Democratic Republic of the Congo(DRC).
The World Health Organization(WHO) congratulates the country and all those involved in ending the

outbreak while urging them to extend this success to combatting other diseases in DRC. The recent Ebola virus
(EBOV) epidemic in West Africa emerged around the end of 2013 in the prefecture of Guckdou in Guinea [1]
and caused at least 11,310 deaths among 28,616 recorded cases in Guinea, Sierra Leone, and Liberia [2]. It has
been argued that the West African EBOV epidemic illustrated problems in the early detection of, and rapid
response to, infectious disease outbreaks of public health importance. For the past decade, researches have
been conducted in laboratories to better understand the biology and potential therapies of Ebola virus (EBOV)
[3]. However, field-based research in high risk populations such as impoverished villages much progress has
not been accomplished. For instance, there have been outbreaks in the Democratic Republic of Congo in 2007,
2008 and in Uganda in 2007 [4].

Mathematical models have been used extensively to study the dynamics of EBOV transmission [5]. Tahir
et al. [6] presented mathematical model for the Ebola virus. A similar mathematical model was presented
recently in [7]. Another recent mathematical model on the Ebola virus was studied in [8]. Ebola virus is
one of the four ebolaviruses known to cause disease in humans. It has the highest case-fatality rate of these
ebolaviruses, averaging 83% since the first outbreaks in 1976, although fatality rates up to 90% have been
recorded in one outbreak (200203). There have also been more outbreaks of the Ebola virus than of any other
ebolavirus. In 1976 the first Ebola virus was found of the Marburg virus [9,10]. In the mean while another team
found Ebola virus, from Ebola River where this river was first considered to be near to the Republic of the
Congo [9–11]. A mathematical model Prevention strategy for superinfection mathematical model tuberculosis
and HIV associated with AIDS was recently presented [12].
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The name Ebola virus is derived from the Ebola River, a river that was at first thought to be in close
proximity to the area in the Democratic Republic of Congo. The incubation period, that is, the time interval
from infection with the virus symptoms is 2 to 21 days. Humans are not infectious until they develop
symptoms. The family of the related virus included (1) Cuevavirus,(2) Marburgvirus, and (3) Ebolavirus.
Majority of human death occurred by Ebola virus and in West Africa and it becomes epidemic in 2013 to 2015
[13]. Some cases reported out from West Africa, all infected are foreign travelers who exposed to affected
regions while later they showed Ebola fever symptoms when reached to destinations [14]. In this period the
virus caused near about 286,16 are suspected while 113,10 exact and confirmed deaths cases [15]. The Ebola
virus spread in many countries, which start in Guinea and move across Liberia and Sierra Leone.

The Ebola virus also spreads by the human to human contacts like secretions, blood, body fluids of the
infected individuals, surfaces and the materials of infected (that is) cloth and bedding. The virus causes serious
acute illness and becomes fatal if the patient takes no treatment. The Ebola virus causes an acute, serious
illness which is often fatal if untreated. Pathogen genome sequencing is also being used to assist with the
identification of unknown infection sources and transmission chains, as pathogen genomes contain valuable
information that complements contact tracing efforts. In the case of Ebola, Arias et al. [4] demonstrated that
rapid outbreak sequencing in locally established sequencing facilities can identify transmission chains linked
to sporadic cases. In addition to identifying specific transmission pathways, pathogen genome analysis can
also shed light on the origins, evolution and transmission dynamics of a pathogen during an epidemic [16].
Early in the EBOV epidemic analysis such as those by Gire et al.[17] demonstrated that the virus entered the
human population in the late 2013 and crossed from Guinea to Sierra Leone in May 2014 through the sustained
human-to-human transmission.

In this article, we directed as follows: In Section 2, the model formulation has been illustrated. In
Section 3, the reproductive number is derived, and its sensitivity analysis is given in the Section 4. Next
endemic equilibrium points are derived and the local stability analysis is shown stable at disease free, as
well as, at endemic equilibrium in Section 5. Further we derived the global stability of the model with the
help of Lyapunov function at disease free, and at endemic equilibrium in Section 6. Finally, we have shown
numerically result by RK4 method and Matlab programming in Section 7 and conclude our paper in Section 8.

2. Model formulation and method

Ebola SEIVR (susceptible, exposed, infected, vaccinated, recovered) mathematical model [18,19] is defined
as:

S• = 1
2 ψ− ξS− 1

ψ λSE− ε1SI − ε2SI,
E• = λSE−ωEI − (µ1 + µ2)E,

I• = ωEI + ε1SI + ε2SI − 1
ξ η IR− (φ1 + φ2)I,

V• = (φ1 + φ2)I − ζV,
R• = 1

ξ η I − δR.


(1)

along with the following initial conditions:

[S(0), E(0), I(0), V(0), R(0)] ≥ 0.

Here, S represent susceptible individuals, E shows exposed individuals, I represent infected V represent
the vaccinated individuals, R represent recovered individuals, ψ and ξ represent new birth rate and death rate
in susceptible individuals, ε1 represent infection transmission rate from susceptible to infected individuals
through wild animals infection, and ε2 represent the infection transmission rate from susceptible individual
to infected individuals through domestic animals, λ represent infection transmission rate from susceptible to
exposed individuals, ω represent infection transmission rate from exposed individual to infected individuals,
η represented the rate of recovery in recovered individuals, µ1 and µ2 represent natural death rate and
infectious death rate in exposed individuals, φ1 and φ2 representing natural and infectious death rate of
infected individuals respectively. We represent the total population of the model (1) as below,

B(t) = S + E + I + V + R,
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which will be written as,
dB(t)

dt
=

dS
dt

+
dE
dt

+
dI
dt

+
dV
dt

+
dR
dt

.

Using values from model (1), we get the following result

dB(t)
dt

= ψ− ξS− (µ1 + µ2)E− η IR− (φ1 + φ2)I + η I − ζV − δR. (2)

From Equation (2), we have
dB(t)

dt
≤ ψ− ξS.

Clearly

lim
t→∞

supB ≤ ψ

ξ
. (3)

For the study of biological purpose, the feasible and sufficient region for model (1) is denoted by < and
defined as:

< =

{
(S, E, I, V, R) ∈ R5

+, B ≤ ψ

ξ

}
. (4)
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Figure 1. The plot shows the Ebola virus behavior.

3. R0-the reproduction number of model

In many epidemiological models, the basic reproduction number is one of the key values that can predict
whether the infectious disease will spread into a population or die out. The basic reproduction number is
the average rate of secondary infectious cases when one infectious individual is introduced in a susceptible
population. In this section we used the concept of next generation matrix method which was developed by
Driessche et al. [20]. For this we divide the system into infectious class "F" and non infectious class "V" as
under,

F =

[
λSE−ωEI

ωEI + ε1SI + ε2SI − η IR

]
,
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and

V =

[
(µ1 + µ2)E
(φ1 + φ2)I

]
.

Now to find Jacobian F and V, we processed as:

F =

[
λS−ωI −ωE

ωI ωE + ε1S + ε2S− ηR

]
.

V =

[
µ1 + µ2 0

0 φ1 + φ2

]
.

Therefore, the reproductive number R0 of our model (1) is given as:

R0 =
(ε1 + ε2)ψ

ξ(φ1 + φ2)
. (5)

Table 1. Sensitivity Analysis of Chosen Parameters R0

Parameter Sensitivity Index Value

New rate Sψ +1.0001
Ebola treatment rate Sξ +0.8087

Rate through class change Sε2 -0.7687
Exposed individuals treatment Sλ -0.7761

Modified parameter Sω +0.1245
Rate throuhg individual left class Sξ -0.9011

Modified parameter Sψ +0.8315

The Table 1 shows that their are two influences parameters involve on the rate of reproductive number, i.e,
positive and negative. In addition, ψ, ξ, ε2 and ω have positive influences while ε1, λ and η have negative effect
on the rate of reproductive number. From this we describe that, increasing or decreasing 10% will increase
or decrease the rate of reproductive number 10%, 8.087%, 1.245% and 8.315% are given in Figures showing
different images of reproductive number R0 and 6. On the other side, we see that the parameters index by, ω,
ε2 and ξ describe that increase its values 10% should decrease it 10% reproductive number upto 7.687, 7.761
and 9.011 given in Figures 2, 3 and 4.

Now, to control Ebola infection, we need to focus on parameter ψ which have highest sensitivity index
1.0000, which means decreasing its value 10% will decrease the rate of reproductive number by 10% defined
in [1].

4. Endemic equilibrium points with related sketch of the model

Now, we find the endemic equilibrium points which also play important role in any epidemiological
model. The disease-free equilibrium points results to be locally asymptotically stable if the reproduction
number(R0) is less than unity, that is 1 while the endemic equilibrium points is locally asymptotically stable
if such a number exceeds unity that is greater then 1. Following are the endemic equilibrium points of the
concern model:

E∗ = − ξλ
,

I∗ =
λ

ω
S− 1

ω
(µ1 + µ2),

R∗ =
η

δ
(

λ

ω
S− 1

ω
(µ1 + µ2)),
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Figure 2. The plot shows sensitivity analysis of different parameters of the reproductive number R0.

where the value of the term S∗ is given below,

S∗ =
δω2ξ2 + λδωξ(φ1 + φ2)− λδ2(µ1 + µ2)

λ(δωξ(ε1 + ε2)− λξη2)
.

5. Local stability analysis of the proposed model

5.1. Local stability analysis at disease free equilibrium

The local stability analysis at disease free equilibrium of the model (1), are KFe = {S, E, I, R}, which
implies in disease free form as KFe = {ψ/ξ, 0, 0, 0}. Thus, we processed by the following Jacobian matrix at
KFe:

K(DEe) =


ξ −λS −(ε1 + ε2)S0 0
0 λS0 − (µ1 + µ2) 0 0
0 0 (ε1 + ε2)S0 − (φ1 + φ2) 0
0 0 0 δ{(ε1 + ε2)S0 − (φ1 + φ2)}

 . (6)

Thus for local stability analysis of disease free equilibria, we have the following Theorem 1.

Theorem 1. At disease free equilibrium KFe = {ψ/ξ, 0, 0, 0}. If R0 < 1, then the concern model (1) is locally
asymptotically stable, while if R0 > 1, the model (1) is unstable.

Proof. We have the following eigenvalues from Jacobian matrix J(KEe):

λ1 = −ξ, (7)

λ2 = λS0 − (µ1 + µ2), (8)

λ3 = (ε1 + ε2)S0 − (φ1 + φ2), (9)

λ4 = δ{(ε1 + ε2)S0 − (φ1 + φ2)}. (10)
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Figure 3. The plot shows sensitivity analysis of different parameters of the reproductive number R0.
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Figure 4. The plot shows sensitivity analysis of different parameters of the reproductive number R0.
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Figure 5. The plot shows sensitivity analysis of different parameters of the reproductive number R0.

It is clear from Equation (5), λ1 = −ξ < 0. Taking Equation (6) λ2 = −{(µ1 + µ2)− ψ}. It implies that
λ2 < 0 if and only if (µ1 + µ2) > ψ. From Equation (7) (that is) λ3 = (ε1 + ε2)S0

h − (φ1 + φ2). So clearly
λ3 = R0 − 1. So λ3 =< 0 iff R0 < 1. From Equation (8) λ4 = −δ{1− R0} < 0 if and only if R0 < 1, which
complete the proof.

5.2. Local Stability Analysis At Endemic Equilibrium

For local stability analysis at endemic equilibrium, we have the following result.

Theorem 2. Local asymptotical stability at endemic equilibrium, will hold if R0 > 1 for model (1) that is, at KEe =

{S∗, E∗, I∗, R∗} and unstable if R0 > 1.

Proof. For stability analysis at endemic equilibrium, consider the 4× 4 matrix as:

KEe =


−ξ + λE∗ + K1 0 −(ε1 + ε2)S∗ 0

0 −K1K2 K4 0
0 0 (ωK4K1)I∗ + K1K2K5 −(ηK2

1K2)I∗

0 0 0 K6


where,

K1 = (ε1 + ε2)I∗,

K2 = λS∗ −ωI∗ − (µ1 + µ2),

K3 = ωE∗ + (ε1 + ε2)S∗ − ηR∗ − (φ1 + φ2),

K4 = −{λ(ε1 + ε2)S∗ + ωK1}E∗,
K5 = −{(K1K2) + (ε1 + ε2)I∗(ε1 + ε2)S∗},
K6 = −δ(ωK1K4 I∗ + K1K2K5) + η2(K2

1K2)I∗.
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Thus for endemic equilibrium, we get

λ∗1 = −ξ + λE∗ + K1, (11)

λ∗2 = −K1K2, (12)

λ∗3 = (ωK4K1)I∗e + K1K2K5, (13)

λ∗4 = K6. (14)

Now, from Equation (9) λ∗1 = −{ξ + ξE∗ + (ε1 + ε2)I∗}, so λ1 < 0 iff (φ1 + φ2) + ω > (µ1 + µ2) and
(φ1 + φ2) + ω > η2. Now by using Equation (10), λ∗2 = −K1K2 < 0 if and only if λ < 1 and λ > ω.
Now by checking the value of λ∗3 , from Equation (11), we observed that λ∗3 = (ωK4K1)I∗e + K1K2K5 < 0 iff
{λ(ε1 + ε2)S∗h + K1ω}ωE∗ I∗ > ωI∗ + {(µ1 + µ2)(k1k2)(ε1 + ε2)

2− λ}S∗. By performing some calculation, we
observed that λ3 < 0. Taking Equation (12) and performing some calculation, we have λ4 < 0 if and only if
ωK4 I∗ + K2K5 > η2K1K2 I∗. Clearly local stability analysis at endemic equilibrium is asymptotically stable for
system (1) which completed the proof.

6. Global stability analysis of the proposed model

In this section, we discuss the global stability analysis of the problem. There is a power full tool Lyapunov
function, that is used for the global stability analysis, hence to check the global stability analysis of the model
(1), we construct a Lyapunov function [21,22]. We have two cases: (1) global stability analysis at disease free
equilibrium and (2) global stability analysis at endemic equilibrium.

6.1. Global stability analysis at disease free equilibrium

Theorem 3. For system (1), if R0 ≤ 1, then Globally asymptotically stability will hold for disease free equilibrium if
S = S0 and unstable for R0 > 1.

Proof. To show global stability at disease free equilibrium of the model (1), considered the following Lyapunov
function:

U(S, E, I, R) =
1
3
(S− S0 + E− E0 + I − I0)3.

Obviously the‘above function is greater then zero at disease free equilibrium and equal to zero at S = S0,
and E = I = R = 0. Differentiating U(S, E, I, R) with respect to t, we obtain the following result:

dU
dt

(S, E, I, R) = (S− S0 + E− E0 + I − I0)2ψ− λS + λSE− (µ1 + µ2)E− η IR− (φ1 + φ2)I.

After some simplification, we get

dU
dt

(S, E, I, R) = −(S− S0 + E− E0 + I − I0)(K−Q).

Clearly Equation (13) is less then zero if and only if K > Q, where

K = ψE + (µ1 + µ2)E + (ηR + (φ1 + φ2))I,

and

Q = (1 + E)ψ.

Here we see that dU
dt (S, E, I, R) = 0 if and only if S = S0, E = E0, I = I0, and R = R0 while dU

dt (S, E, I, R) <
0 iff K > Q. Then the disease free equilibrium is globally asymptotically stable.
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6.2. Global stability analysis at endemic equilibrium

Theorem 4. For globally asymptotically stability, if R0 > 1, then the endemic equilibrium of model (1) is stable and
S = S∗, E = E∗, I = I∗ R = R∗ and unstable, if R0 < 1.

Proof. For global stability analysis at endemic equilibrium, we define

Q(S, E, I, R) =
1
2
(S− S∗)2 +

1
2
(I − I∗)2,

we have Q(S, E, I, R) > 0 and it equal to zero at S = S∗, E = E∗, I = I∗. Differentiating Q(S, E, I, R) with
respect to t we get,

dQ
dt

(S, E, I, R) = (S− S∗ + I − I∗)(
d
dt

S +
d
dt

I),

Putting values from model (1) in above, we obtain

dQ
dt

(S, E, I, R) = −(S− S∗ + I − I∗)(ηR + φ1 + φ2 −ωE)I.

Hence we have dQ
dt (S, E, I, R) = 0 if and only if S = S∗, E = E∗, I = I∗ and R = R∗. Also dQ

dt (S, E, I, R) < 0,
iff ηR + φ1 + φ2 > ωE, hence endemic equilibria is globally asymptotically stable for model (1). So the proof
is completed.
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7. Numerical simulation and discussion

In this section, we present numerical interpretation of the proposed model with the help of Matlab
programming. Numerical results given in Figure 1 shows simple graph of the model having no vaccination
used yet, Figures 2-5 represents different behaviour of the reproductive number R0, Figure 6 with and without
vaccination in population, while Figures 7 and 8 shows graph with and without vaccine and also the area
infected graph if no vaccination taken.
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We present the following Table 2. By using the parameters value, from Table 2, non-negative initial
population sizes and from different time interval, we obtain the simulation Figure 6, which represents that
there are always susceptible S(t) and recovered R(t) population which quickly recovered with vaccination,
while the remaining individuals populations i.e. exposed E(t), and infected I(t) individuals respectively
shown the exposed individuals recovery is very slow without vaccination, while with vaccination, a rapid
effeteness occur in there health condition. Similarly if we do not provide vaccine to the infected class we see
from simulation their graph is going high but vaccination rapidly cover their problem. Also the population in
the model is represented by area graph. In the area graph the less area shows less infection while more cover
area graph shows great infection in any time in any population.

All values taken fixed in the Table 2. In Figure 6 the simulation are presented with and without vaccination
to the population, while Figure 7 and 8 shows effected area if no vaccination used.

Table 2. Values of Parameters

Notation Description of Parameter Value

S Susceptible individuals population 00− 2000
E Exposed individuals population 00− 2000
I Infected individuals population 00− 2000
R Recovered individuals population 00− 2000
ψ New birth rate in susceptible individuals 0.6321
λ Transmission rate from susceptible to exposed individuals 0.2877
ω Transmission rate from exposed to infected individuals 0.7613
η Transmission rate from infected to recover individuals 0.4389
ε1 Individuals get wild animals infection from susceptible to infected 0.1234
ε2 Individuals get domestic animals infection from susceptible to infected 0.2431
µ1 Natural death rate of exposed individuals 0.9704
µ2 Infectious death rate of exposed individuals 0.0432
φ1 Natural death rate of infected individuals 0.2006
φ2 Infectious death rate of infected individuals 0.0656
δ Natural death rate of recover individuals 0.6704
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Figure 8. The plot shows red without and blue with vaccination.

8. Conclusion

A mathematical epidemic model SEIR of the Ebola virus is considered where the transmissibility agent
is considered animal at any time "t" in the population. First we formulated the model according to there
infectious classes, and by next-generation matrix approach, we find reproductive number (that is) R0 with
biological feasible region. Also we discussed the reproductive number sensitivity indices by showing different
behavior of R0. After we discussed endemic equilibrium points of the model. Then according to the
reproductive number we discussed the local stability and global stability at disease free equilibrium and at
endemic equilibrium and shown stable. The global stability at both respects is discussed with the help of
Lyapunov function. Finally, we obtained numerical solution of compartmental mathematical model by the
using Matlab program. Also we obtained the area involved we no vaccination taken. The figures show
first column of the with and without vaccination population while the second column shows the infected
population area of the model. The graph approaches represent new idea for the scientists in future. In the area
graph, the less area shows less infection while more cover area graph shows great infection at any time in any
population.
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