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Abstract: Let G be a simple graph. A total dominator coloring of G is a proper coloring of the vertices of G in
which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic
number χt

d(G) of G is the minimum number of colors among all total dominator coloring of G. In this paper,
we study the total dominator chromatic number of some graphs with specific construction. Also we compare
χt

d(G) with χt
d(G− e), where e ∈ E(G).
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1. Introduction

I n this paper, we are concerned with simple finite graphs, without direction, multiple, or weighted edges,
and without self-loops. Let G = (V, E) be such a graph and λ ∈ N. A mapping f : V(G) −{1, 2, ..., λ}

is called a λ-proper coloring of G if f (u) 6= f (v) whenever the vertices u and v are adjacent in G. A color
class of this coloring is a set consisting of all those vertices assigned the same color. If f is a proper coloring
of G with the coloring classes V1, V2, ..., Vλ such that every vertex in Vi has color i, then we write simply f =

(V1, V2, ..., Vλ). The chromatic number χ(G) of G is the minimum number of colors needed in a proper coloring
of a graph. The concept of a graph coloring and chromatic number is very well-studied in graph theory. A
dominator coloring of G is a proper coloring of G such that every vertex of G dominates all vertices of at least
one color class (possibly its own class), i.e., every vertex of G is adjacent to all vertices of at least one color
class. The dominator chromatic number χd(G) of G is the minimum number of color classes in a dominator
coloring of G.

The concept of dominator coloring was introduced and studied by Gera, Horton and Rasmussen [1]. Let
G be a graph with no isolated vertex, then the total dominator coloring (TD-coloring) is a proper coloring of G
in which each vertex of the graph is adjacent to every vertex of some (other) color class [2]. The total dominator
chromatic number (TDC-number), χt

d(G) of G is the minimum number of color classes in a TD-coloring of G.
The TDC-number of a graph is related to its total domination number. A total dominating set of G is a set
S ⊆ V(G) such that every vertex in V(G) is adjacent to at least one vertex in S. The total domination number
of G, denoted by γt(G), is the minimum cardinality of a total dominating set of G. A total dominating set of G
of cardinality γt(G) is called a γt(G)-set.

The literature on the subject on total domination in graphs was surveyed and detailed in the book [3].
It is not hard to see that for every graph G with no isolated vertex, γt(G) ≤ χt

d(G). Computation of the
TDC-number is NP-complete. The TDC-number of some operations of two graphs was studied in [2]. Also
Henning in [4] established the lower and upper bounds on the TDC-number of a graph in terms of its total
domination number. He showed that, for every graph G with no isolated vertex satisfies γt(G) ≤ χt

d(G) ≤
γt(G) + χ(G). The properties of TD-colorings in trees was studied in [4]. Trees T with γt(T) = χt

d(T) was
characterized in [4].

The join G = G1 + G2 of two graph G1 and G2 with disjoint vertex sets V1 and V2 and edge sets E1 and
E2 is the graph union G1 ∪ G2 together with all the edges joining V1 and V2. For two graphs G = (V, E) and
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H = (W, F), the corona G ◦ H is the graph arising from the disjoint union of G with |V| copies of H, by adding
edges between the ith vertex of G and all vertices of ith copy of H.

In this paper, we continue the study of TD-colorings in graphs. We compute the TDC-number of some
specific graphs in the Section 2. In Section 3, we study TD-chromatic number of corona and join of graphs.

2. Total dominator chromatic number of specific graphs

In this section, we consider the specific graphs and compute their TDC-numbers. First we need the
TDC-number of path and cycle graph. Note that the value of TDC-number of paths and cycles which have
computed in [5] are lower and upper bounds for χt

d(Pn), χt
d(Cn) and are not the exact value. For example by

formula in [5], χt
d(P60) = 40 which is not true and the correct value is 32 which can obtain by the following

theorem.

Theorem 1. If Pn is the path graph of order n ≥ 8, then

χt
d(Pn) =


2k + 2 if n = 4k,
2k + 3 if n = 4k + 1,
2k + 4 if n = 4k + 2, n = 4k + 3.

Also χt
d(P3) = 2, χt

d(P4) = 3, χt
d(P5) = χt

d(P6) = 4 and χt
d(P7) = 5.

Proof. It is easy to show that χt
d(P3) = 2, χt

d(P4) = χt
d(P5) = 3, χt

d(P6) = 4 and χt
d(P7) = 5. Now let n ≥ 8.

First we show that for each four consecutive vertices we have to use at least two new colors. Consider Figure
1. We have two cases. If we give an old color to vi+1, then we need to give a new color to vi+2 and vi+3 to have
a TD-coloring. Also if we give a new color to vi+1, then we have to give a new color to vi+2 or vi to have a
TD-coloring. So we need at least two new colors in every four consecutive vertices.

Suppose that n = 4k, for some k ∈ N. We give a TD-coloring for the path P4k which use only two new
colors in every four consecutive vertices. Define a function f0 on the vertices of P4k, i.e., V(P4k) such that for
any vertex vi,

f0(vi) =

{
1 if i = 1 + 4k,
2 if i = 4k,

and for any vi , i 6= 4k and i 6= 4k+ 1, f0(vi) is a new number. Then f0 is a TD-coloring of P4k with the minimum
number 2k + 2.

v
i+2

v
i+1v

i
v
i+3

Figure 1. Four consecutive vertices of the Path graph Pn.

If n = 4k + 1, for some k ∈ N, then first color the 4k − 4 vertices using f0. Now for the rest of vertices
define f1(v4k−3) = 1, f1(v4k−2) = 2k + 1, f1(v4k−1) = 2k + 2, f1(v4k) = 2k + 3 and f1(v4k+1) = 2. Since for
every five consecutive vertices we have to use at least three new colors, so f1 is a TD-coloring of P4k+1 with the
minimum number 2k + 3.

If n = 4k+ 2, for some k ∈ N, then first color the 4k− 4 vertices using f0. Now for the rest of vertices define
f2(v4k−3) = 1, f2(v4k−2) = 2k + 1, f2(v4k−1) = 2k + 2, f2(v4k) = 2k + 3, f2(v4k+1) = 2k + 4 and f2(v4k+2) = 2.
Since for every six consecutive vertices we have to use at least four new colors, so f2 is a TD-coloring of P4k+2
with the minimum number 2k + 4.

If n = 4k+ 3, for some k ∈ N, then first color the 4k− 4 vertices using f0. Now for the rest of vertices define
f3(v4k−3) = 1, f3(v4k−2) = 2k + 1, f3(v4k−1) = 2k + 2, f3(v4k) = 2, f3(v4k+1) = 2k + 3, f3(v4k+2) = 2k + 4 and
f3(v4k+2) = 2. Then f3 is a TD-coloring of P4k+2 with the minimum number 2k + 4. Therefore we have the
result.

Theorem 2. Let Cn be the cycle graph of order n ≥ 8. Then
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χt
d(Cn) =


2k + 2 if n = 4k,
2k + 3 if n = 4k + 1,
2k + 4 if n = 4k + 2, n = 4k + 3.

Also χt
d(C3) = 3, χt

d(C4) = 2, χt
d(C5) = χt

d(P6) = 4 and χt
d(C7) = 5.

Proof. Observe that χt
d(C3) = 3, χt

d(C4) = 2, χt
d(C5) = χt

d(C6) = 4 and χt
d(C7) = 5. Now let n ≥ 8. It is

sufficient to give a TD-coloring to the Pn as we see in the proof of the Theorem 1, then we add an edge between
vertices v1 and vn. Then we have a TD-coloring for Cn and the result follows.

From Theorems 1 and 2, we have the following corollary.

Corollary 1. For every n ≥ 6, χt
d(Pn) = χt

d(Cn).

Here we consider the ladder graph. We need the definition of Cartesian product of two graphs. Given
any two graphs G and H, we define the Cartesian product, denoted G2H, to be the graph with vertex set
V(G)× V(H) and edges between two vertices (u1, v1) and (u2, v2) if and only if either u1 = u2 and v1v2 ∈
E(H) or u1u2 ∈ E(G) and v1 = v2.

Let n ≥ 2 be a natural number. The n-ladder graph can be defined as P22Pn and denoted by Ln. Figure 2
shows a TD-coloring of ladder graphs.

Theorem 3. For every n ≥ 2,

χt
d(Ln) =

{
n + 1 if n is odd,
n if n is even.

Proof. Let xij be a vertex of ladder graph in i-th row and j-th column (1 ≤ i ≤ 2 and 1 ≤ j ≤ n). If n = 2k + 1
for some k ∈ N, then we color the vertex x1j with color j and for vertices x2j we assign the color 2j + 2 for
x2(2j+1) and color 2j− 1 for vertex x2(2j) (Figure 2). This coloring gives a TD-coloring for Ln and this method
warranty the least number of used colors. So χt

d(L2k+1) = 2k + 2. With similar argument we have the result
for even n.

1 2 3 4 5 6 2k − 1 2k 2k + 1

2 1 4 3 6 5 2k 2k − 1 2k + 2

1 2 3 4 5 6 2k − 1 2k 2k + 1

2 1 4 3 6 5 2k 2k − 1 2k + 2

2k + 2

2k + 1

Figure 2. Total dominator coloring of L2k+1 and L2k+2, respectively.

Here, we generalize the ladder graph P22Pn to grid graphs Pn2Pm. The following theorem gives the
TDC-number of grid graphs:

Theorem 4. Let m, n ≥ 2. The TDC-number of grid graphs Pn2Pm is,

χt
d(Pn2Pm) =


kχt

d(Pn2P2) = kχt
d(Ln) if m = 2k and n = 2s,

kχt
d(Ln) + χt

d(Pn) if m = 2k + 1 and n = 2s,
sχt

d(Lm) + χt
d(Pm) if m = 2k and n = 2s + 1,

χt
d(Pn−12Pm−1) + χt

d(Pm+n−1) if m = 2k + 1 and n = 2s + 1.

Proof. We prove two first cases. The proof of another cases are similar. Suppose that m = 2k and n = 2s, for
some k and s. We use induction on m.
Case 1. If m = 2 and n = 2s, then we have a ladder and the result follows from Theorem 3. For m = 2, as you
see in Figure 3, we have two Ln as subgraphs of 4× n grid graph. Since in TD-coloring of 4× n grid graph, we
can not use the colors of vertices in the first ladder, for the second ladder, so we need 2χt

d(Ln) colors. It is easy
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to see that we cannot use less colors. Since in the Pn2P2k, there are exactly k ladder Ln as subgraphs, we have
the result by induction hypothesis.

1 2 3 4 5 6

2 1 4 3 6 5

χt
d(Ln)

2s− 1

2s2s− 1

2s

2s− 2

2s− 3

Figure 3. TD-coloring of 4× n grid graph.

Case 2. Now suppose that n = 2s and m = 2k + 1. First for TD-coloring of Pn2P2k, by Case 1, we need kχt
d(Ln)

colors. It remains to color a path Pn. Therefore we need kχt
d(Ln) + χt

d(Pn) colors to obtain a TD-coloring
of Pn2Pm. By the same argument in the proof of Theorem 3 we conclude that less colors cannot used for
TD-coloring of this graph.

Now we consider graphs with specific construction. Let G be a connected graph constructed from
pairwise disjoint connected graphs G1, ..., Gk as follows: Select a vertex of G1, a vertex of G2, and identify
these two vertices. Then continue in this manner inductively. Note that the graph G constructed in this
way has a tree-like structure, the Gi’s being its building stones (see Figure 4). Usually say that G is obtained
by point-attaching from G1, ..., Gk and that Gi’s are the primary subgraphs of G. A particular case of this
construction is the decomposition of a connected graph into blocks (see [6]).

Gi

Gj K
n

K
n

K
n

K
n

K
m

Figure 4. Graph obtained by point-attaching from Gi and Q(m, n), respectively.

As an example consider the graph Q(m, n) constructed in the following manner: consider the graph Km

and m copies of Kn (see [6]). By definition, the graph Q(m, n) is obtained by identifying each vertex of Km with
a vertex of a unique Kn, see Figure 4. The following theorem gives the TDC-number of Q(m, n):

Theorem 5. Let m, n ≥ 2 be integers. For the graph Q(m, n) we have:

χt
d(Q(m, n)) = m + n− 1.

Proof. We need colors 1, 2, . . . , m to color the complete graph Km. Now for the rest of vertices of Q(m, n), we
use colors m + 1, m + 2, . . . , m + n− 1 in each Kn. This gives a TD-coloring for Q(m, n). We shall show that
we are not able to have TD-coloring with less colors. Suppose that we omit one color class between numbers
m + 1, m + 2, . . . , m + n− 1. Consider one copy of Kn and simply call it G1 and call the vertex which has no
color as v. We have to use one color from the numbers 1, 2, . . . , m to color v. Suppose that this color is i, where
1 ≤ i ≤ m. Then there is another copy of Kn, say G2 which has a vertex with color i (point attached vertex).
Also there is w ∈ V(G2) such that has no color. We cannot color w with m + 1, m + 2, . . . , m + n− 1. Since w
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is not adjacent to v, so it cannot get an arbitrary color from 1, 2, . . . , m. Therefore we have to change the color
of a vertex s ∈ V(G2) − {w} to j ∈ {1, 2, . . . , m}. But w is not adjacent to the vertex with color j in Km. So
we cannot give the vertex w any color. By the same argument we cannot omit two color classes and so on.
Therefore χt

d(Q(m, n)) = m + n− 1.

Let to consider a special cases of point attaching of k graphs. Let G1, G2, ..., Gk be a finite sequence of
pairwise disjoint connected graphs and let xi, yi ∈ V(Gi). The link G of the graphs {Gi}k

i=1 with respect to the
vertices {xi, yi}k

i=1 is obtained by adding an edge which connect the vertex yi of Gi with the vertex xi+1 of Gi+1
for all i = 1, 2, ..., k− 1, see Figure 5, [6].

G
1

G
2 G

3
G

n

2

3

4

2

1
3

5

6

5 9

7

8

9

10

12

117 11

4n-3

4n-2

4n-3

4n-1

4n

4n-1

Figure 5. The link graph and total dominator coloring of L6,2,n, respectively.

Here we shall study the total dominator coloring of families of graphs which obtained by point attaching
from G1, ..., Gk.

Theorem 6. Let G be a graph obtained by point attaching from G1, ..., Gk. Then

χt
d(G) ≤ χt

d(G1) + χt
d(G2) + . . . + χt

d(Gn).

Proof. Since we can use numbers 1, 2, . . . , χt
d(G1) for G1 and use numbers χt

d(G1)+ 1, χt
d(G1)+ 2, . . . , χt

d(G1)+

χt
d(G2) for G2 and continue this process, then we have a TD-coloring . Therefore we have the result.

We shall show that the upper bound in Theorem 6 is sharp. For this reason, we consider a special kind of
link graph has shown in Figure 5.

Theorem 7. For the graph L6,2,n in Figure 5 we have:

χt
d(L6,2,n) = 4n.

Proof. We color the vertices of L6,2,n with numbers 1, 2, 3, ..., 4n, as shown in the Figure 5. Observe that, we
need 4n color for TD-coloring. We shall show that we are not able to have TD-coloring with less colors. Note
that L6,2,1 is C6 and χt

d(C6) = 4. Now we consider L6,2,2. Two kinds of coloring of L6,2,2 has shown in Figure 6.
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Figure 6. Two kinds of total dominator coloring of L6,2,2.

We show that χt
d(L6,2,2) = 8. If we want to omit one color class and use another color, then we cannot

have a TD-coloring. For example if we delete color 5, then

(i) We cannot use color 1, since a vertex with color 2 exists which is not adjacent to the mentioned vertecis.
(ii) We cannot use colors 6, 7 (or color 2 in the right figure), since the coloring is proper.

(iii) We cannot use color 3 or 4, because the vertices with these colors are not adjacent with the mentioned
vertices.

(iv) We cannot use color 8 because the vertex with color 6 is not adjacent to the vertex with color 8.

Argument about the rest of the colors is the same. So we have χt
d(L6,2,2) = 8. Using this inductively

method have the result for L6,2,n.
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Here we investigate the relation of TDC-number of a graph G with TDC-number of G− e, where e ∈ E(G):

Theorem 8. If G is a connected graph, and e = vw ∈ E(G) is not a bridge, then

χt
d(G− e) ≤ χt

d(G) + 2.

Proof. Suppose that the vertex v has color i and the vertex w has color j. We have the following cases:
Case 1. The vertex v does not use the color class j and the vertex w does not use the color class i in the
TD-coloring of G. So the TD-coloring of G gives a TD-coloring of G− e. Therefore χt

d(G− e) ≤ χt
d(G). In this

case χt
d(G− e) = χt

d(G).
Case 2. The vertex v uses the color class j but the vertex w does not use the color class i in the TD-coloring of
G. Since the vertex v used the color class j for The TD-coloring then we have two cases:

(i) If the vertex v has some adjacent vertices which have color j, then we give the new color l to all of these
vertices and this coloring is a TD-coloring for G− e.

(ii) If any other vertex does not have color j, since G − e is a connected graph, then there exists a vertex s
which is adjacent to v. Now we give the vertex s a new color l and this coloring is a TD-coloring for
G− e.

So for the Case 2, we have χt
d(G− e) = χt

d(G) + 1.
Case 3. The vertex v uses the color class j and the vertex w uses the color class i in the TD-coloring of G. We
have three cases:

(i) There are some vertices which are adjacent to vertex v and have color j. Then we color all of them with
color l, and there are some vertices which are adjacent to the vertex w and have color i. We color all of
them with color k. So this is a TD-coloring for G− e.

(ii) Any other vertex does not have color j. Then we do the same as Case 2 (ii) and there are some vertices
which are adjacent to the vertex w and have color i. Then we do the same as Case 3 (i).

(iii) Any other vertex does not have colors i and j. Then we do the same as Case 2 (ii) and use two new colors
l and k.

So we have χt
d(G− e) ≤ χt

d(G) + 2.

3. TDC-number of corona and join of graphs

In this section, we study the TDC-number of corona and join of two graphs. In the following theorem, we
consider graphs of the form G ◦ H and study their TDC-numbers:

Theorem 9. (i) For every connected graph G, χt
d(G ◦ K1) = |V(G)|+ 1,

(ii) For every two connected graphs G and H,

χt
d(G ◦ H) ≤ χt

d(G) + |V(G)|χt
d(H).

(iii) For every two connected graphs G and H,

χt
d(G ◦ H) ≤ |V(G)|+ |V(H)|.

Proof. (i) We color all vertices of graph G with numbers {1, 2, ..., |V(G)|} and all pendant vertices with
another color, say, |V(G)|+ 1. It is easy to check that we are not able to have TD-color of G ◦ K1 with less
color. Therefore we have the result.

(ii) For TD-coloring of G and H, we need χt
d(G) and χt

d(H) colors, respectively. We observe that if we
use χt

d(G) + |V(G)|χt
d(H) colors, then we have a TD-coloring of G ◦ H. So χt

d(G ◦ H) ≤ χt
d(G) +

|V(G)|χt
d(H).

(iii) We color the vertices of G, by |V(G)| colors and for every copy of H, we use |V(H)| another colors. We
observe that this coloring gives a TD-coloring of G ◦ H. So χt

d(G ◦ H) ≤ |V(G)|+ |V(H)|.
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Remark 1. The upper bound for χt
d(G ◦ H) in Theorem 9(iii) is a sharp bound. As examples, for the graph

C4 ◦ K2 and K2 ◦ K3 we have the equality (Figure 7).

1 2

56

34

56

5 6 5 6

1 2

33

4

5

4

5

Figure 7. Total dominator coloring of C4 ◦ K2 and K2 ◦ K3, respectively.

Here, we state and prove a formula for the TDC-number of join of two graphs:

Theorem 10. Let G and H be two connected graphs, |V(G)| ≥ 2 and |V(H)| ≥ 2 , then

χt
d(G + H) = χt

d(G) + χt
d(H).

Proof. For the TD-coloring of G + H, the colors of vertices of G cannot be used for the coloring of vertices of
H, and the colors of the vertices of H cannot use for coloring of the vertices of G, so

χt
d(G + H) ≥ χt

d(G) + χt
d(H).

Now, it suffices to consider the coloring of G and the coloring of H in the TD-coloring of G + H. Therefore, we
have the result.
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