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ABSTRACT 
 

Soil erosion caused by water is one of the most common causes of land degradation worldwide. 
Within framework of this research soil erosion risk in Tsageri municipality, Georgia was evaluated 
using Revised Universal Soil Loss Equation (RUSLE) and a machine learning-based Random 
Forest (RF) model. Open access digital datasets and field observations collected in 2023-2024, 
which included visually identified erosion areas and GPS-recorded data on the presence or 
absence of erosion, were utilized in modeling process. Data processing and modeling conducted 
using ArcGIS Pro 3.0 and RStudio software. According to RUSLE results, 39.7% of the study area 
falls under the very low erosion risk zone, and 20.7% is in the very high risk zone. The RF model 
results indicated that 16.5% of the territory is under very low risk of erosion and 13.9% - very high 
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risk. It was observed that RUSLE model tends to overestimate erosion rates on steep, forested 
slopes, while the RF model, by incorporating additional variables, provided more accurate 
prediction. These findings suggest that combining RUSLE with machine learning improves soil 
erosion risk assessment, particularly in complex landscapes such as in Tsageri municipality. Future 
researche should focus on testing additional variables to refine the modeling process further and 
enhance predictions. The generated digital thematic maps offer valuable insights for understanding 
the spatial dynamics of soil erosion within the study area, analyzing the factors driving the process 
and developing effective mitigation strategies. 
 

 

Keywords: Soil; erosion; machine learning; Georgia. 
 

1. INTRODUCTION  
 

Soil erosion caused by water is a complex 
process, influenced by natural and human-made 
factors and poses significant challenge to the 
sustainable economic development of many 
countries (Pimentel et al., 1995; Montgomery, 
2007). In this regard Georgia is no exception, 
particularly in its mountainous regions, where soil 
erosion issues are amplified by the combination 
of geological, topographical, climatic, 
hydrological and pedological conditions. These 
natural factors, coupled with the effects of human 
activities, such as logging, overgrazing and 
poorly managed agricultural practices, create a 
highly favorable environment for the progression 
of soil erosion (Poesen, 2018). 
 

To develop effective mitigation strategies for 
water-induced soil erosion and ensure the 
sustainable use of natural resources in the 
context of rapid climate change, it is essential to 
assess both the rate and extent of erosion 

quickly and efficiently (Panagos et al., 2015). 

This requires understanding erosion as a multi-
dimensional process, identifying the key 
contributing factors, establishing clear cause-
and-effect relationships and conducting spatial 

analyses at various scales (Borrelli et al., 2017). 
 

The primary objective of this study is to model 
water-borne soil erosion and predict soil loss in 
the Tsageri municipality, a representative 
mountainous region of Georgia. Notably, for this 
region and much of the country, systematic soil 
erosion studies and assessment have not been 
conducted since the Soviet era, leading to lack of 
up-to-date data. 
 

To achieve these goals, the study employs the 
Revised Universal Soil Loss Equation (RUSLE), 
a widely used empirical model for estimating 
long-term average annual soil loss (Renard et al., 
1997). However, understanding the limitations of 
RUSLE, particularly in its reliance on empirical 
parameters that may not adequately capture the 

spatial heterogeneity of erosion process, the 
study integrates additional variables and 
incorporates the Random Forest (RF) algorithm, 
a machine learning model known for its ability to 
handle complex, non-linear relationships 
between the parameters of different phenomena 
(Breiman, 2001). 
 

Given the advantages of erosion modeling, 
namely lower costs in terms of time and 
materials compared to field and laboratory 
studies, especially over large areas and the 
absence of in-situ measurements, the modeling 
process in this study predominantly relies on 
freely available digital data from scientific 
databases (e.g., Copernicus, Soil Grids, NASA), 
supplemented by field observations conducted 
during 2023-2024. This approach not only 
addresses the data gaps but also ensures that 
the methodology is scalable and replicable in 
other regions of country. 
 

2. MATERIALS AND METHODS  
 

2.1 Study Area 
 

Tsageri municipality (Fig. 1) is located in Racha-
Lechkhumi and Kvemo Svaneti region, between 
the southern branches of the Main Caucasus 
Range. Covering an area of just over 755 km2, it 
constitutes approximately 1% of the country’s 
total territory. 
 

The study area exhibits a diverse soil cover, 
characterized by a wide variety of alluvial soils 
distributed throughout the Tsageri depression. 
On the slopes of the low mountains, brown forest 
and raw carbonate soils prevail. In the foothills 
and high mountain areas, brown forest and 
podzolic brown forest soils are predominant. In 
the subalpine and alpine zones, mountain-
meadow soils are present, which transmits into 
more primitive mountain-meadow soils at higher 
elevations. The soil-forming rocks in these areas 
include crystalline shales, quartz diorites, 
limestones and gneisses. 
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Fig. 1. Study area 
 

Tsageri municipality has a humid subtropical 
climate with cold winters and long, warm 
summers. The avarage annual air temperature in 
the lowland areas is 10-11.50 C, while July 
temperatures range from 20-250 C. The recorded 
absolure minimum is -260 C. Annual precipitation 
is between 1200-1300 mm and reaching up to 
2000 mm in the highlands. The primary 
components of the hidrographic network are the 
Rioni and Tskhenistskali rivers. 
 

The administrative center of the municipality is 
the city of Tsageri. According to the 2014 
census, the population is 10 387. The territory of 
the municipality is divided into 19 administrative 
units. Currently, according to the register of 
municipalities of Georgia, the number of 
populated areas is 58 villages and 1 city. 
 

2.2 Methods 
 

Within the study, soil erosion modeling and risk 
assessment were conducted by integrating the 
RUSLE model and the Random Forest algorithm. 
The data required for the modeling were 
processed using ArcGIS Pro 3.0 and RStudio 
software tools. 
 

The RUSLE (Revised Universal Soil Loss 
Equation) model predicts the average annual soil 
erosion rate for a given area by incorporating five 
key parameters: 1. Atmospheric precipitation, 2. 
Soil type, 3. Topography, 4. Vegetation cover, 
and 5. Erosion control measures. 
 

By integrating the RUSLE with GIS platform, 
each element is represented in a separate raster 
data format. The expected average annual 
erosion is then calculated using the program's 
mathematical tools. This is expressed by the 
following equation: 

 

A = R * K * LS * C * P                      (1) 
 
Where - A is soil loss (t/ha per year); R 
represents the rainfall-runoff erosivity factor 

(MJ.mm/ha.h.yr); K - soil erodibility factor 
(t.ha.h/ha.MJ.mm); LS - slope length and 
steepness factor; C-vegetation cover factor; P - 
protective measures. LS, C and P factors have 
no dimension. 
 
To calculate the R factor needed for modeling 
and assessing the erosive potential of 
atmospheric precipitation in the study area, 20-
year average monthly precipitation data from the 
Global Precipitation Measurement (GPM) 
mission were used. This dataset comprises 240 
files (GPM_3IMERGM v07) covering the years 
2001 to 2020. 
 
As illustrated in (Fig. 2), the GPM data reveal a 
trend of decreasing average annual precipitation 
in the study area over the reporting period. 
 
Based on the received precipitation metrics, the 
R factor was calculated using the following 
formula:  

𝑅 =  1.735 ×  10
(1.50×𝑙𝑜𝑔 ∑

𝑝𝑖
2

𝑝 
−0.81812

1 )
           (2) 

 
Where, R represents the erosivity factor of 
precipitation, Pi and P - the monthly and  annual 
amount of precipitation, respectively                   
(Arnoldus, 1977). 
 
As shown in the (Fig 3), the R factor values 
calculated using the formula are directly 
proportional to the amount of annual 
precipitation. 
 
To calculate soil erodibility (K factor) in the 
RUSLE model, several physical soil parameters 
are considered, including texture (the distribution 
of soil particles by size), organic matter, structure 
and permeability. Among these, soil texture is the 
most influential on K factor values. Generally, the 
K factor reflects the soil's susceptibility to erosion 
(erodibility) and its conditions for sediment 
transport. 
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Fig. 2. Annual precipitation in the study area (GPM 2001-2020) 
 

 
 

Fig. 3. Annual precipitation and obtained R factor values in the study area 
 
Soil texture is determined by the proportional 
distribution of sand, silt, and clay particles in soil 
profiles. Surface texture, specifically within the 
top 20-30 centimeters, is especially important in 
terms of erosivity. 
 
The soil parameters required to calculate the K 
factor for the study area, which in our case are 
expressed by the granulometric composition of 

the soil and the content of organic matter, were 
obtained from Soil Grids (Poggio et al., 2021) 
data for soil horizons up to 30 centimeters. This 
data includes indicators of silt, sand, clay and 
organic matter in the soils within the study             
area. 
 
To calculate the K factor values, we use the 
following formula (Sharply & Williams, 1990):  

 

𝐾 = (0.2 + 0.3𝑒
[−0.0256𝑆𝐴𝑁(1−

𝑆𝐼𝐿

100 
)]

) ×  (
𝑆𝐼𝐿

𝐶𝐿𝐴+𝑆𝐼𝐿
)0.3  ×  [1 − 

0.25𝐶

𝐶+𝑒(3.72−2.95𝐶)]  ×  [1 − 
0.7𝑆𝑁1

𝑆𝑁1+𝑒(22.9𝑆𝑁1−5.51)]           (3) 

                                                                                         
where, SAN is the sand content (%), SIL – the silt content (%), CLA – the clay content (%), C – 
organic substances (%), SN1 = 1 – SAN/100. 
 
LS factor values for Tsageri municipality are calculated by adapting the following formula (Moore & 
Burch, 1986): 
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𝐿𝑆 = (𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ×  
𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒

22.13
)

0.4
×  (

𝑠𝑖𝑛 𝑆𝑙𝑜𝑝𝑒

0.0896
)

1.3
         (4) 

 
Where, LS is the slope length and inclination 
factor (dimensionless), Flow accumulation - A 
raster file with the flow accumulation values for 
each pixel, Cell size is the pixel size (in this case 
12.5 m, depending on the spatial resolution of 
the DEM), sin Slope - sine of slope inclination (in 
degrees), and 0.4 and 1.3 are the                       
empirical members of the formula (Moore & 
Wilson, 1992). 
 
The C factor was quantified by applying the 
Normalized Difference Vegetation Index (NDVI) 
values derived from the Sentinel-2 imagery, into 
the following formula: 

 

𝐶 =  𝑒
[−𝑎 

𝑁𝐷𝑉𝐼
(𝛽−𝑁𝐷𝑉𝐼)

]
                                        (5) 

 
where a and β are dimensionless members that 
describe the shape of the curve representing the 
relationship between NDVI and the C                    
factor. Their values are defined as 2 and 1, 
respectively. 
 
The soil protection measures factor (P) is the 
most experimental component of the model and 
reflects the effect of various measures that 
reduce the volume and speed of surface runoff 
thereby decreasing the risk of erosion. 
 
To determine the P factor over large areas, 
Wener's method is used. This is expressed by 
the formula (Wenner, 1981): 

 
𝑃 = 0.2 + 0.3 × 𝑆                                       (6) 

 
where S is the inclination of the slope in percent. 
The P factor has no dimension. 
 
The slope inclination (%) in the study area was 
determined based on the DEM, according to 
which P factor values was generated using the 
above formula. 
 
The development and progression of soil erosion 
are affected by various geo-environmental 
parameters not considered in the RUSLE model. 
These include slope exposure, river network 
density, distance to roads and rivers, lithological 
characteristics, and others (Bouramtane et al., 
2022). 
 
To incorporate these parameters into the 
modeling process and enhance the accuracy of 
predicting the average annual soil loss in the 

study area, the Random Forest algorithm was 
further adapted. 
 
Random Forest is an ensemble-based, non-
parametric machine learning algorithm widely 
used to address ecological and geospatial 
problems such as water resources management, 
natural hazard control etc., in recent times, since 
its versatility allows for the analysis of various 
data types. For example, it can be satellite 
images, numerical and statistical data and 
others. 
 
The Random Forest algorithm is based on 
decision trees and combines broad, regression 
and classification tree groups. Two fundamental 
parameters are required to construct a random 
forest model: 1. The number of trees in the 
forest, defined as "n-tree"; and 2. The number of 
features considered at each split, known as „m-
try”. Classification trees provide the ability for 
individual trees to vote or make predictions, as a 
result of which one or the other class is 
determined according to the regulation of 
maximum rating across the entire forest. 
 
In addition to the 5 factors used in the RUSLE 
model, digital maps of 11 factors (Fig. 5) were 
prepared based on available data for the study 
area, such as: Slope exposure, plane curvature, 
altitude, distance to road, distance to river, flow 
density, lithology, NDVI, slope inclination, stream 
power index (SPI) and topographic wetness 
index (TWI). 
 
Slope exposure indicates the orientation of the 
slope relative to cardinal directions and is derived 
from processing the digital elevation model. 
Exposure determines the orientation from which 
the slope receives solar radiation, affecting 
temperature, evaporation, and moisture levels. 
South-facing slopes generally receive more 
direct sunlight, resulting in higher temperatures 
and evaporation rates compared to north-facing 
slopes. Soils on southern slopes typically have 
lower moisture content, making them more prone 
to erosion. Additionally, slope exposure 
influences vegetation growth, water flow 
formation, and accumulation, all of which can 
further impact erosion processes. 
 
The curvature of the plane reflects the forms of 
terrain and is also derived from the processing of 
the DEM. 
 
The altitude of given location affects the 
distribution of precipitation, the formation and 
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accumulation of runoff. As elevation increases, 
the amount of atmospheric precipitation 
increases under the influence of orographic 
factors. This obviously leads to the                    
presence of more water with potential to develop 
erosion. In such cases, the share of                   

snowmelt water also increases, which               
influence seasonal changes in soil moisture 
content. The highly fragmented terrain and 
sparse vegetation, characteristic of high 
mountain areas, are also a contributing factor to 
water-borne soil erosion. 

 

 
 
 

  
 

 

 
 

Fig. 4. RUSLE factors. from left to right: R factor; K factor; LS factor; C factor; P factor 
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The next parameter selected as an additional 
variable for the RF model is the site's distance 
from the road. The construction and operation of 
roads directly affect soil erosion, which is 
manifested in the destruction of vegetation cover, 
soil compaction, alterations in surface flow 
patterns, etc. 

 
The distance from various streams can also have 
a potential influence on water erosion of the soil. 
Rivers, streams, canals, etc. represent a kind of 
natural drainage system that carries surface 
runoff and sediments to downstream areas. An 
area closer to a particular stream is 
hydrologically more connected to the 
hydrographic network, which can increase the 
risk of erosion due to concentrated surface runoff 
and sediment transfer to the riverbed. During 
heavy rains and snowmelt, sediments are 
mobilized from these areas and transferred to 
streams, which increases erosion rates and 
sediment accumulation in coastal areas. 

 
Flow density expresses the degree of 
hydrological connectivity within an area. High 
values of this factor indicate the abundance of 
water flows, which impact water and sediment 
transport. Areas with high stream density values 
are characterized by more surface runoff and 
sediment movement. Flow density values also 
determine the morphology and stability of 
riverbeds within a watershed. The narrow 
riverbeds with steep gradients are often 
associated with higher flow density values. 
These conditions result in the high speed of the 
flow and potentially high erosion along the 
riverbed. Intense erosion, under very high flow 
rates, can cause riverbed rupture, widening, and 
meandering, which in return alters flow dynamics 
and sediment transport conditions. 

 
Lithology plays a fundamental role in soil 
formation. Different types of rocks are 
characterized by different levels and rates of 
weathering. Relatively resistant, such as igneous 
and metamorphic rocks, produce coarser-
textured and less erodible soils. In contrast, 
sedimentary rocks like slates or sandstones, 
which experience significant weathering, produce 
fine-textured soils that are more susceptible to 
erosion. Lithology affects the resistance of soil 
and substrate to water erosion. Rocks with high 
resistance to erosion, such as basalts and 
granites, provide a more stable substrate to 
erosion agents and contribute to soil stability. 
The raster file used in the model was created by 
digitizing the 1:500,000 scale geological map of 

Georgia (Gudjabidze & Gamkrelidze, 2003) for 
the study area. 
 
NDVI (Normalized Difference Vegetation Index) 
is one of the main indicators of vegetation 
greenness (health) and density. Higher NDVI 
values indicate greater vegetation cover and 
biomass. Vegetation has a decisive importance 
in terms of soil erosion control, which is 
manifested in the retention of atmospheric 
precipitation, reduction of surface runoff, 
stabilization of the soil by the root system, etc.  
Areas with high NDVI values are usually covered 
with dense vegetation, which mitigates the 
impact of raindrop kinetic energy and soil particle 
detachment. Dense vegetation enhances water 
infiltration into the soil and increases soil 
moisture levels. Additionally, vegetation 
produces a dead cover that acts as a protective 
layer and enriches the soil with organic 
substances, further aiding in erosion control. 
 
Slope inclination reflects the steepness or 
inclination of the surface and, in conjunction with 
the LS factor in the RUSLE model, affects soil 
water erosion. The slope inclination gradient is 
directly related to the volume and velocity of 
surface runoff. Steep slopes typically experience 
rapid surface runoff with high kinetic energy. 
During intense rainfall, concentrated flows on 
moderately to steeply inclined slopes can create 
microchannels, which facilitates the development 
of rill erosion. Furthermore, the slope gradient 
influences both soil moisture distribution and 
infiltration rates. 
 
The Stream Power Index (SPI) is a 
geomorphological parameter used to measure 
the erodibility of flowing water. It is influenced by 
parameters such as slope inclination, stream 
floor morphology and water outflow. The SPI 
helps to quantify the potential for erosion by 
evaluating the energy and capacity of water to 
transport sediments. The concept of SPI was 
created by Luna Leopold and Ronald Miller in 
1956 and is calculated using the following 
formula: 
 

𝑆𝑃𝐼 =  
𝑄

𝑊
 × 𝑆                                             (7) 

 

where, Q represents water outflow (cubic meters 
per second), W - width of the riverbed (meters) S 
- gradient of the streambed (dimensionless or in 
percent). 
 

SPI indicators give an idea of the erosive 
potential of a stream. High values indicate high 
erodibility. 
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The topographic wetness index (TWI) is a 
terrain-based parameter used to characterize the 
potential wetness of a landscape, given its 
topographic features. TWI is calculated from a 
digital elevation model using the following 
formula: 

 

𝑇𝑊𝐼 =  𝐼𝑛 (
𝐴

𝑡𝑎𝑛(𝛽)
)                                     (8) 

 

where, A represents the catchment area of the 
upper reaches of the stream, the total area from 

which all streams flow into a particular point. β - 
local slope angle. The TWI is dimensionless. 

 
The training data for the Random Forest 
algorithm consist of point inputs derived from the 
RUSLE, high-resolution satellite imagery and 
fieldwork observations (Fig. 6). A total of 250 
points indicating either the presence or absence 
of erosion were collected. Of these, 70% were 
used to train the model, while 30% were 
reserved for testing. 
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Fig. 5. Additional predictors for RF. From left to right: Aspect; Distance to Road; Distance to 

Stream; Draingae Density; Elevation; Lithology; NDVI; Plane Curvature; Slope; Spi; TWI 
 

Model parameters were selected through cross-
validation and model optimization. The number of 
trees in the forest - n-tree was set to 500, and the 
number of random variable considered at each 
node - m-try was set to 4. 
 
Table 1 shows the statistics of the obtained 
model. F1-Score describes the correctness of the 
model, taking into account the precision of the 
predictions and recall. The achieved value - 0.77 

indicates that the model attained a relatively high 
level of accuracy in predicting both the presence 
and absence of soil erosion. 
 
Sensitivity, also known as the true positive rate, 
determines the proportion of true positive 
predictions from all cases of erosion. A sensitivity 
index of 0.79 indicates that the model effectively 
identified 79% of the actual occurrence of soil 
erosion. 
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Fig. 6. RF training points 
 

Table 1. Statistics of the obtained model 

 
F1-Score Sensitivity Accuracy 

0.77 0.79 0.91 

 
Accuracy represents an indicator of overall 
accuracy of model’s predictions, encompassing 
both true positives and true negatives. An 
accuracy of 0.91 indicates that the model 
correctly predicted 91% of all cases in the 
dataset. 

 
Overall, considering the above parameters, it can 
be concluded that the obtained model 
demonstrates high performance in predicting soil 
erosion. 
 

3. RESULTS AND DISCUSSION 
 

After modeling all five factors included in the 
RUSLE (Fig. 4), thematic raster images were 
combined according to equation (1). As a result, 
the average annual rate of soil loss (t/ha per 
year) was obtained for the study area. 
 

In (Fig. 7), accumulated lower numerical values 
reflect lower erosion rates at a given site and 
vice versa. The minimum value recorded is 0, 
and the maximum value is 1468.3. 
 

We categorized the received erosion rates within 
the study area into 5 classes (very low, low, 
medium, high, very high), using the "natural 
breaks" classification method. 

 
 
Fig. 7. Spatial distribution of soil erosion in the study area (as a result of RUSLE modeling) 
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Fig. 8. Distribution of soil loss by area (RUSLE) 
 
According to the RUSLE model results (Fig. 8), 
39.7% of the study area falls within the very low 
erosion risk zone. Conversely, 20.7% of the area 
is classified as having a very high erosion rate. 
This is mainly associated with the high 
hypsometry and steep slopes of the Lechkhumi 
and Khvamli ridges, as well as the Askhi karst 
massif, which are either completely devoid of soil 
and vegetation cover, or are represented by 
primitive soils and sparse vegetation. 
 
Similarly to the modeled data of the RUSLE, we 
also divided the erosion metrics obtained by the 
RF algorithm (Fig. 9) into five classes. Regarding 
the distribution of erosion risk classes, RF 

provided a somewhat different picture, which was 
expected. The Random Forest algorithm, 
leveraging its ability to process diverse data, can 
analyze the complex, non-linear relationships 
between soil erosion and its contributing factors. 
In contrast, RUSLE is an empirical model that 
assumes a linear relationship among its factors 
when predicting erosion. This linear approach 
may result in oversimplified or generalized 
outcomes, particularly in complex physical-
geographical conditions. However, by this               
sign, its simplicity and practicality can also                    
be considered a positive side, if the modeling is 
carried out in relatively less complex conditions. 

 

 
 
Fig. 9. Spatial distribution of soil erosion in the study area (as a result of RF modeling) 
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Fig. 10. Distribution of soil loss by area (RF) 
 
As shown in Fig. 10, the Random Forest 
modeling results indicate that 16.5% of the study 
area is classified as having very low soil loss and 
erosion risk, while 13.9% of the area is 
categorized as having very high risk. 
 
Spatial analysis of the RUSLE model outcomes 
reveals that both C factor (cover management) 
and the LS factor (slope length and steepness) 
are important contributors to erosion processes. 
It should be noted that, due to the specific 
characteristics of the study area, the model 
inaccurately predicted high erosion rates on 
steep slopes, which are often covered by highly 
productive forests that serve soil protection and 
water regulation functions. Typically, in the case 
of high projection coverage of vegetation, soil 
erosion rates are reduced to a minimum. 

Nonetheless, the model struggled to compensate 
the high values of the LS factor in the study area 
with other factors (the main one being the C 
factor). This suggests that for extensive 
territories with diverse and complex terrain, it is 
essential to consider these limitations when 
interpreting the RUSLE model results. In 
particular, steep, forested slopes might require 
additional adjustments or alternative approaches 
to better capture the protective role of vegetation 
in reducing erosion risk. 
 
A comparison of RUSLE results with those 
obtained from RF modeling reveals significant 
differences in the distribution of specific erosion 
risk classes between the models, across the 
study area (Fig. 11). 

 

 
 
Fig. 11. Specific share of soil erosion classes in the study area for the RUSLE and RF models 
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The discrepancy is particularly notable in the 
class representing low erosion risk (5-10 t/ha). 
RUSLE identified this class for 17.6% of the 
territory, whereas the RF algorithm classified 
59.8% of the area within the same risk zone. As 
mentioned above, in some cases, RUSLE 
overpredicts high erosion rates under conditions 
where the values of individual factors cannot 
compensate for each other. In this case, the 
random forest model assigned a low erosion risk 
class to areas where RUSLE identified medium 
or high erosion risk.  This class is spatially 
related to slopes of different hypsometry and 
inclination in the study area. Although these 
features of the terrain contribute to erosion 
development, their influence is balanced by the 
dense vegetation, which significantly reduces the 
erosion risk. This characteristic of RUSLE is also 
noted by other authors (Liu et al., 2018). The 
difference between the modeling results is 
relatively minor for the specific share of medium, 
high, and very high erosion risk classes (about 5-
7%). According to the Random Forest model, 

areas with very high potential for soil erosion are 
primarily associated with secondary meadows 
near villages, which are extensively used for 
grazing livestock (Fig. 12), also with quarries and 
exposed bare ground, such as arable fields. 
Comparing Fig. 9 to Fig. 7, difference in the 
spatial distribution of other classes is evident, 
which, as mentioned, is due to the differing 
evaluations of the relationships between 
individual variables by the models used. 
 
The variable importance of the additional                
factors used in the Random Forest modeling 
process, indicates the influence each parameter 
had on predicting erosion. The variable 
importance is calculated by evaluating how much 
the inclusion of each variable contributes                 
to the reduction in Gini coefficient (Gini impurity) 
across the trees in the random forest. Variables 
that lead to greater reduction in the Gini 
coefficient are considered more important for 
modeling the research phenomenon (Huffman  et 
al.2023). 

 

 
 

Fig. 12. Landslides and eroded secondary meadows near village Spatagori (2024) 
 

 
 

Fig. 13. Variable importance of the obtained model for soil erosion prediction 
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As shown in Fig. 13, the most important variables 
for soil erosion risk modeling in the study area 
include the C factor, NDVI, LS factor, R factor, 
slope inclination, K factor, SPI and distance to 
stream, each of which contributes more than 
50% to the model’s performance. Although each 
variable used in the modeling process has the 
potential to influence soil erosion development, 
their relative importance varies across different 
areas and depends on the conditions of 
interaction between them. In this case, the low 
value obtained for the lithology factor is 
noteworthy. As previously mentioned, the 
thematic raster image used in the modeling was 
derived from the digitization of the geological 
map of Georgia at a scale of 1:500,000. 
Therefore, the information available for the 
research area is highly generalized and lacks the 
detailed aspects important for accurate modeling, 
which is one of the main reasons for the low 
importance associated with the liyhology factor. 
 
Spatial analysis of the thematic images of 
individual factors and the soil erosion map 
generated by the RF model reveals that areas 
with high values of the C factor and NDVI 
predominantly show a very low or low risk of 
erosion. In contrast, when high values of the LS 
factor and R factor coincide, the model indicates 
moderate to high rates of erosion. 
 

4. CONCLUSION 
 
In the present study, soil erosion risk by water in 
Tsageri municipality was assessed using two 
different approaches: an empirical model 
(RUSLE) and a machine learning model 
(Random Forest). The modeling process 
primarily relied on freely available digital data, 
supplemented by data collected through field 
expeditions in years 2023-2024. The results 
indicated that the distribution of erosion classes 
obtained from RUSLE and RF models differed 
across the study area. According to the RUSLE, 
42.3% of Tsageri municipality is classified in the 
medium, high, or very high risk zones for soil 
water erosion. In contrast, the RF algorithm 
identified 23.7% of the area within these same 
risk categories. Comparing the modeling results 
with field data shows that the RUSLE model 
sometimes overestimates the risk of medium, 
high and very high erosion on high-gradient 
slopes covered with broad-leaved and mixed 
forests. In the case of the Random Forest model, 
this overestimation is largely addressed by 
incorporating additional variables into modeling 
process. In addition to this, the risk of erosion in 

the study area is primarily associated with 
cultivable land on slopes, quarry exploitation 
sites and meadows in the subalpine and alpine 
zones. It should be noted that in the future, the 
utilization of the largest part of Tsageri 
municipality’s territory from an agricultural point 
of view is very limited due to the topographical 
conditions and the lack of available land. 
 
The inclusion of additional variables in the 
modeling process represents an experimental 
aspect of this study. It is recommended to 
examine various sets of erosion-influencing 
variables to identify the most effective 
combinations for each specific study area. 
 
While the quality of the data used affects the 
accuracy of the research findings, the results 
substantially address existing gaps in the field. 
They provide valuable insights into land 
degradation processes in the study area and the 
interrelationships among causative factors, which 
creates the basis for future studies. 
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