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ABSTRACT 
 

This study investigates the efficacy of synthetic data in mitigating bias in artificial intelligence (AI) 
model training, focusing on demographic inclusivity and fairness. Using Generative Adversarial 
Networks (GANs), synthetic datasets were generated from the UCI Adult Dataset, COMPAS 
Recidivism Dataset, and MIMIC-III Clinical Database. Logistic regression models were trained on 
both synthetic and original datasets to evaluate fairness metrics and predictive accuracy. Fairness 
was assessed through demographic parity and equality of opportunity, which measure balanced 
prediction rates and equitable outcomes across demographic groups. Fidelity and data diversity 
were evaluated using statistical tests such as Kolmogorov-Smirnov (KS) and Kullback-Leibler (KL) 
divergence, along with the Inception Score, which quantifies diversity in synthetic data. The results 
revealed significant fairness improvements for models trained on synthetic datasets. For the 
COMPAS dataset, demographic parity increased from 0.72 to 0.89, and equality of opportunity rose 
from 0.65 to 0.83, without compromising predictive accuracy (0.82 AUC-ROC compared to 0.83 for 
original data). Based on the findings, this research recommends employing GANs for generating 
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synthetic data in bias-sensitive domains to enhance demographic inclusivity and ensure equitable 
outcomes in AI models. Furthermore, integrating human-in-the-loop (HITL) systems is critical to 
monitor and address residual biases during data generation. Standardized validation frameworks, 
including fairness metrics and fidelity tests, should be adopted to ensure transparency and 
consistency across applications. These practices can enable organizations to leverage synthetic 
data effectively while maintaining ethical standards in AI development and deployment. 
 

 
Keywords: Synthetic data; bias mitigation; GANs; demographic parity; AI ethics. 
 

1. INTRODUCTION 
 

Synthetic data is fast becoming important in 
artificial intelligence (AI) model training in recent 
times, particularly in addressing pervasive biases 
within data-driven applications. Conventional 
datasets, frequently restricted by real-world 
limitations, show socio-demographic disparities 
that present inherent biases into AI models. 
Ferrara (2023) claims that models trained on 
such data often replicate or amplify these biases, 
resulting to prejudice or incorrect results in 
essential fields which include healthcare, finance, 
and criminal justice, where equity and precision 
are of greatest importance. Such biases 
sabotage the credibility and reliability of Artificial 
intelligence (AI) systems. By augmenting 
demographic inclusivity, synthetic data provides 
a revolutionary substitute for promoting 
impartiality within AI models. 
 
Advances in generative AI have empowered 
synthetic data generation to replicate real-world 
conditions while ensuring privacy and regulatory 
compliance. Unlike real data, synthetic datasets 
can be designed to represent diverse 
demographic groups, effectively addressing 
imbalances. Recent trends indicate rapid growth 
in synthetic data adoption, with projections 
suggesting that by 2026, around 75% of 
organizations will integrate synthetic data into 
their AI applications—a substantial increase from 
less than 5% in 2023, as Perri (2024) highlights. 
This surge underscores a demand for privacy-
focused solutions and a recognition of synthetic 
data’s role in reducing biases in real-world 
datasets. 
 

A key benefit of synthetic data is how it can bring 
diversity to training datasets. As Offenhuber 
(2024) points out, in fields like facial recognition, 
synthetic data helps achieve a more balanced 
representation across gender and racial lines, 
directly addressing the biases that are so often 
baked into existing models. Nevertheless, Miletic 
and Sariyar (2024) argue that creating synthetic 
data is difficult —it has to closely reflect real-
world dynamics to be effective. While synthetic 

data can capture a lot of real-world patterns, 
Pezoulas et al. (2024) note that it still struggles 
with certain nuances of human behavior and 
social interactions, which may limit its 
effectiveness in some applications. 
 
Ethical and regulatory issues underscore the 
importance of synthetic data in advancing AI. 
Current data privacy regulations, like the EU AI 
Act and the U.S. Executive Order on AI, resonate 
with the privacy-preserving nature of synthetic 
data since it doesn’t reveal actual personal 
details. Outeda (2024) observes that these 
policies emphasize fairness, transparency, and 
accountability in AI systems, making synthetic 
data an appealing choice for organizations 
focused on compliance. Yet, as synthetic data 
technology evolves, ongoing vigilance is crucial 
to avoid unintended biases during data 
generation. Human-in-the-loop (HITL) systems 
incorporate human management and play a vital 
role here. Gong et al. (2023) note that around 
80% of organizations using synthetic data 
employ HITL methods to identify and correct 
biases that purely automated processes might 
overlook. 
 
Synthetic data provides both practical and 
financial benefits, especially in industries where 
data collection is expensive, time-consuming, or 
restricted by privacy regulations. Pezoulas et al. 
(2024) disputes that synthetic data overcomes 
the logistical and financial challenges associated 
with acquiring real-world data. This advantage is 
particularly crucial in sectors like healthcare and 
autonomous systems, where data collection may 
encounter ethical or legal barriers. For example, 
synthetic images aid in identity verification and 
the training of autonomous systems by offering 
regulatory-compliant data. This flexibility is 
essential for AI applications that require 
scalability while ensuring compliance with data 
protection laws, such as the GDPR and CCPA, 
as suggested by Arokun (2024). 
 
Despite its benefits, synthetic data comes with 
limitations that need to be carefully addressed. 
One major concern is the risk of transferring 
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biases from the original datasets to the synthetic 
data, especially if the source data lacks 
demographic diversity. Shah and Sureja (2024) 
point out that while synthetic data has the 
potential to enhance demographic inclusivity, 
biases can still persist if the generative 
processes are not thorough enough. To ensure 
that synthetic data supports fair AI model 
development, it’s essential to implement fidelity 
checks and bias-monitoring protocols to maintain 
demographic alignment. Bias in artificial 
intelligence (AI) models remains a persistent 
challenge, undermining the fairness and 
reliability of automated decision-making systems 
in critical domains such as healthcare, finance, 
and criminal justice. Conventional datasets often 
reflect socio-demographic disparities and 
historical biases, leading to skewed predictions 
and inequitable outcomes. These issues not only 
erode public trust in AI systems but also hinder 
their ethical adoption in sensitive applications. 
Synthetic data has emerged as a promising 
solution to address these challenges by providing 
diverse and balanced datasets while ensuring 
compliance with data privacy regulations. 
 
Recent case studies from various field show the 
growing use of synthetic data. In human 
resources, for example, synthetic data is used to 
create more balanced datasets, helping to 
reduce biases in hiring algorithms and support 
fairer hiring practices. In healthcare, synthetic 
patient data is improving diagnostic models, 
ensuring they perform equitably across diverse 
demographics. Goyal and Mahmoud (2024) 
argue that advances in prompt engineering for 
large language models (LLMs) are expanding the 
versatility of synthetic data, allowing for the 
generation of task-specific data in areas like 
customer service, financial analytics, and other 
bias-sensitive functions. 
 
Synthetic data enables the formation of varied, 
Privacy-compliant datasets, handling restrictions 
connected with real-world data, such as privacy 
risks, scarcity, and ingrained biases. It enables 
the advancement of datasets including broad 
demographic, therefore improving the depictive 
equity of AI models. Moreover, synthetic data 
enhances real-world datasets by increasing the 
scenarios in which AI models operate 
productively, particularly where real data might 
be inadequate or constrained. Generative 
Adversarial Networks (GANs) are a particularly 
innovative approach to generating synthetic data, 
enabling the replication of complex, high-
dimensional distributions reflective of real-world 

demographic diversity. Unlike traditional 
augmentation methods, synthetic data generated 
by GANs can mitigate biases by increasing the 
representation of underrepresented groups, 
thereby promoting fairness in AI model training. 
This capability is crucial for achieving 
demographic parity and equality of opportunity, 
two critical fairness metrics that ensure balanced 
outcomes across different population groups. 
 
This study critically evaluates the effectiveness of 
synthetic data in mitigating bias, analyzing its 
impact on model performance, and identifying 
best practices for generating and integrating 
synthetic data into AI workflows through the 
following objectives: 
 

1. Identifies and evaluate state-of-the-art 
synthetic data generation techniques and 
their suitability for addressing bias in AI 
models 

2. Analyses how synthetic data can replicate 
diverse demographic and contextual 
factors in training datasets, reducing 
biases related to underrepresented groups. 

3. Evaluate the quality of synthetic data 
against real-world and augmented data 
using metrics that assess demographic 
fairness, fidelity, and consistency across 
different AI applications. 

4. Identifies best practices and limitations in 
implementing synthetic data within bias-
sensitive sectors (e.g., healthcare, 
finance), using industry case studies to 
assess practical outcomes and challenges. 

 
The study thus aims at fairness improvements 
and predictive performance, highlighting 
synthetic data as a transformative tool for 
creating equitable and reliable AI systems, thus 
addressing a significant gap in contemporary AI 
practices. 
 

2. LITERATURE REVIEW 
 
Bias in AI models presents substantial obstacles, 
primarily arising from data quality, selection 
processes, and data handling methods. Van 
Giffen et al. (2022) dispute that common types of 
bias—sampling, labelling, and algorithmic—can 
result in distorted result that disproportionately 
affect underrepresented groups. As Shah and 
Sureja (2024) note, sampling bias occurs when 
training data overrepresents or underrepresents 
certain demographics, leading to skewed 
predictions. For example, Limantė (2023) 
suggests that facial recognition technology 
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frequently has lower precision in recognising 
people with darker skin tones if trained mainly on 
lighter-skinned faces. In accordance to Raza et 
al. (2024) explain that categorizing bias arises 
during data annotation, where subjective or 
cultural biases from annotators can influence the 
dataset, strengthening existing social prejudices. 
Furthermore, Akter et al. (2022) highlight that 
algorithmic bias originates during the design and 
optimization phases; when models prioritize 
accuracy over diversity, they may unintentionally 
favor majority classes, marginalizing minority 
populations. These biases can significantly  
affect AI-driven decisions in sensitive areas            
such as hiring and healthcare, where fairness               
is crucial (Ueda et al., 2023; Adigwe et al.,  
2024). 

 
The consequences of AI bias reach into areas 
where proper access and fairness are essential. 
In employment, Min (2023) argues that AI hiring 
tools trained on historical data may 
unintentionally reinforce gender or racial biases, 
thus sustaining workplace imbalances. 
Correspondingly, Seyyed-Kalantari et al. (2021) 
disputes that biased healthcare algorithms can 
result in unequal diagnostic outcomes across 
different demographics. Bekbolatova et al. (2024) 
highlight that healthcare models frequently 
struggle to recognize health risks for certain 
groups as efficiently as for others, even when 
health profiles are similar, which restricts access 
to resources and undermines public trust in AI 
systems. 

 
Tackling these biases is intricate by the inherent 
biases present in real-world data, which 
frequently reflect long-standing disparities, as 
explained by Johnson (2024). Additionally, data 
scarcity in underrepresented communities 
exacerbates demographic imbalances, while 
ethical and privacy concerns restrict access to 
sensitive demographic information (Paik et al., 
2023; Akinola et al., 2024). These difficulties 
indicate the importance of establishing robust 
data standards and various sourcing (Aldoseri et 
al., 2023; Obioha-Val et al., 2024). Nevertheless, 
Morley et al. (2021) disputes that privacy 
regulations and insufficient resources remain 
significant practical barriers. Synthetic data has 
appeared  as a possible resolution , allowing for 
more balanced demographic representation 
without violating privacy; by generating 
controlled, diverse datasets, synthetic data can 
address biases in real-world data and foster 
fairer AI models (Arora, 2024; Alao et al., 2024; 
Arigbabu et al., 2024). 

Alleviating bias requires methods such as data 
augmentation, fairness constraints, and 
algorithmic adjustments (Arigbabu et al., 2024; 
Ferrara, 2023; Siddique et al., 2024). 
Nevertheless, as Siddique et al. (2024) argue, 
technical techniques alone cannot completely 
eradicate biases. Synthetic data, specifically, 
provides a pathway to enhance representational 
fairness and foster AI systems that are both 
inclusive and reliable (Sulastri et al., 2024; 
Asonze et al., 2024). 
 

2.1 Synthetic Data Generation 
Techniques 

 
Synthetic data generation plays a critical role in 
addressing data limitations and biases in Artificial 
Intelligence (AI). Key techniques in this domain 
include Generative Adversarial Networks 
(GANs), Variational Autoencoders (VAEs), and 
diffusion models, each presenting unique 
benefits and difficulties (Ahmad et al., 2022; 
Joeaneke et al., 2024). According to Megahed 
and Mohammed (2023), GANs, which comprise 
of a generator and discriminator working 
collaboratively to manufacture and assess 
synthetic data, generate highly realistic results. 
However, they face issues like training instability 
and mode collapse, leading to a lack of output 
variety. On the other hand, VAEs employ 
encoding and decoding within latent spaces, 
offering controlled variability and more stable 
training processes (Cinelli et al., 2021; Joeaneke 
Val et al., 2024). Bao et al. (2022) argue that 
VAEs are less complex than GANs. Recently, 
diffusion models have attracted increasing 
attention. Akkem et al. (2024) highlight how 
these models refine random noise into detailed, 
high-resolution data but demand substantial 
computational resources. As noted by Wu et al. 
(2024), diffusion models are particularly valuable 
for applications requiring high data fidelity and 
demographic diversity, ensuring accuracy and 
inclusivity (Wu et al., 2024; Gbadebo et al., 
2024). 
 
These techniques hold promise for mitigating 
bias, though each comes with its own limitations. 
GANs, while recognized by Paladugu et al. 
(2023) for producing high-quality outputs, may 
fail to ensure sufficient diversity in fields sensitive 
to demographic representation, such as 
healthcare and finance. VAEs, described by 
Akkem et al. (2024) as stable and efficient, might 
sacrifice fidelity, restricting their applicability to 
complex data distributions. On the other hand, 
Ciucu et al. (2024) disputes that diffusion 
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models, known for their detailed outputs, are 
well-suited for industries that require high 
resolution and demographic representation. 
However, their substantial computational 
requirements restrict wider accessibility. 
 
The rise of large language models (LLMs) has 
significantly advanced synthetic data generation, 
particularly in applications involving text and 
multimodal data. Goyal and Mahmoud (2024) 
clarify that through prompt engineering, 
researchers can guide LLMs like OpenAI’s GPT 
and Google’s LaMDA to create synthetic 
datasets that address demographic imbalances, 
improving representational accuracy. Adel 
Remadi et al. (2024) further suggest that quick 
engineering increases the flexibility of synthetic 
data applications, enabling the generation of 
precise and diverse text that meets specific 
demographic needs. This advancement is crucial 
for bridging demographic gaps and enhancing AI 
model inclusivity. 
 
Nonetheless, ethical considerations remain a 
concern. Synthetic data methods, especially 
those powered by large language models, may 
risk perpetuating biases present in the training 
data (Jacobsen, 2023; John-Otumu et al., 2024). 
Al-kfairy et al. (2024) argue that this underscores 
the need for cautious oversight to avoid 
reinforcing societal biases, even as generative 
models enhance data quality and diversity. 
These advancements emphasize both the 
opportunities and difficulties of using synthetic 
data to create fairer AI systems, illustrating the 
complexities of promoting inclusivity in artificial 
intelligence. 
 

2.2 Synthetic Data in Bias Mitigation 
 
Synthetic data is a powerful tool for alleviating 
biases in AI models, especially iin addressing 
demographic imbalances frequently present in 
real-world datasets. Breugel et al. (2024) 
contend that analysts can create datasets that 
promote fairer AI outcomes by generating 
synthetic data that represents underrepresented 
groups. In the case of facial recognition, Melzi et 
al. (2024) contend that synthetic data fosters 
balanced demographic representation by 
including diverse racial, gender, and age groups, 
helping to reduce the biases commonly found in 
traditional data. Additionally, Pagano et al. (2023) 
highlight that studies show training models on 
synthetic datasets with varied facial 
characteristics improves model accuracy across 

demographics, contributing to more equitable 
outcomes for marginalized groups. 
 
In healthcare, synthetic data equally decreases 
bias in diagnostic outcomes (Giuffrè & Shung, 
2023; Joseph, 2024). Murray et al. (2023) 
emphasize that synthetic patient data with a even 
distribution of age, gender, and ethnicity 
substantially enhances diagnostic accuracy, 
particularly for non-Caucasian patients. This 
method illustrates the possibility of synthetic data 
in addressing healthcare disparities, promoting 
patient equity, and fostering trust in AI-driven 
healthcare applications. Furthermore, synthetic 
data has been utilized in customer service to 
train chatbots on different linguistic and cultural 
interactions (Izadi & Forouzanfar, 2024; 
Ogungbemi et al., 2024). Bhambri and Rani 
(2024) argue that this integration improves 
chatbot responses across diverse user groups, 
reducing biases that previously resulted in 
inaccuracies for foreign speakers. These 
applications highlight the versatility of synthetic 
data in fostering fairness across various areas. 
 
Numerous key metrics assess the effectiveness 
of synthetic data in reducing bias. Demographic 
parity, as noted by Giguere et al. (2022), 
examines whether model expectations are 
equally allocated across demographic groups, 
which is especially important in areas like hiring 
and criminal justice, where equity is crucial. 
Another important metric, equality of opportunity, 
ensures that individuals from different 
demographic groups who meet certain standards 
are treated equally (Abràmoff et al., 2023; Okon 
et al., 2024). Meiser and Zinnikus (2024) suggest 
that these metrics help refine synthetic datasets, 
improving model fairness and reliability, and 
providing a structured framework for evaluating 
demographic equity. 
 
In spite of these advantages, challenges remain 
in balancing fairness metrics, particularly in 
complex applications where multiple biases 
intersect. Guardieiro et al. (2023) argue that 
achieving both demographic parity and equality 
of opportunity can be contradictory, necessitating 
a holistic approach that integrates synthetic data 
generation with rigorous metric assessments to 
continuously refine models. While synthetic data 
plays a crucial role in advancing fairness, fully 
unbiased AI systems require a multi-faceted 
strategy, combining data augmentation and 
algorithmic debiasing with synthetic data to 
promote inclusive and reliable AI systems (Al-
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kfairy et al., 2024; Olabanji et al., 2024; Obioha-
Val., 2024). 
 

2.3 Quality and Validation of Synthetic 
Data 

 
Evaluating the quality and effectiveness of 
synthetic data is essential for ensuring reliable AI 
performance and fair outcomes. Key quality 
metrics—fidelity, accuracy, and representational 
diversity—are fundamental for reviewing how 
well synthetic data matches real-world datasets. 
Raghavan et al. (2024) suggest that fidelity, 
which measures the similarity between              
synthetic and real data, is especially                 
crucial in areas such as autonomous driving                
and medical diagnostics, where realistic data is 
necessary for accurate training. Fidelity is  
usually assessed by comparing statistical 
properties like means and variances between 
synthetic and real datasets, as noted by Yoon et 
al. (2023). Accuracy, which reflects the precision 
of synthetic data, is equally important in 
predictive applications, as it indicates how 
closely models trained on synthetic data perform 
compared to those trained on actual data 
(Pezoulas et al., 2024; Oladoyinbo et al.,                 
2024). Representational diversity, which 
guarantees synthetic datasets encompass a 
broad demographic range, addresses 
underrepresentation and promotes more 
inclusive AI decisions, according to Bhanot et al. 
(2021). 
 

Multiple empirical and statistical techniques are 
employed to authenticate synthetic data. Jiang et 
al. (2024) note that statistical analysis, such as 
the Kolmogorov-Smirnov and Chi-square tests, 
are frequently used to assess the consistency 
between feature distributions in synthetic and 
real data. Real-world comparisons, where 
Artificial Intelligence (AI) models trained on both 
synthetic and real data are evaluated using a 
shared test set, offer practical insights into the 
usefulness of synthetic data (Dankar & Ibrahim, 
2021; Olaniyi, 2024). This approach, specifically 
relevant when synthetic data serves as a 
substitute or complement to real data, 
demonstrates its effectiveness in real-world 
scenarios. Furthermore, domain-specific 
evaluations strengthen the validation process, as 
subject-matter experts assess the accuracy of 
synthetic data within particular fields (Mennella et 
al., 2023; Olaniyi et al., 2024). In healthcare, for 
instance, medical professionals may examine 
synthetic patient data to ensure it reflects 
clinically relevant patterns, thereby elevating its 

suitability for diagnostic purposes (Murtaza et al., 
2023; Olaniyi et al., 2023). 
 
Difficulties persist in generating high-fidelity 
synthetic data that accurately reflects real-world 
complexities (Wang et al., 2024; Olaniyi, 
Omogoroye et al., 2024). Although generative 
models are advanced, they frequently struggle to 
capture the complex, high-dimensional patterns 
found in fields like medical imaging and 
geospatial analysis, as noted by Zhang & Wang 
(2024). These limitations can impede model 
performance in practical applications, where 
even small discrepancies in data fidelity can 
affect outcomes. Additionally, Goyal and 
Mahmoud (2024) argue that synthetic data can 
reproduce biases present in training data, thus 
perpetuating demographic or contextual biases, 
especially when derived from biased datasets. 
 
To tackle these challenges, studies researchers 
are increasingly advocating for hybrid 
approaches that combine synthetic and real data, 
aiming to leverage the diversity of synthetic data 
while maintaining the accuracy of real-world data 
(Gong et al., 2023; Olaniyi, Ugonnia et al., 2024; 
Samuel-Okon et al., 2024). Rane (2023) 
contends that this strategy underscores the 
necessity for robust validation methods and 
ongoing enhancements in quality metrics as 
synthetic data becomes a crucial component of 
Artificial Intelligence (AI). 
 

2.4 Ethical and Regulatory 
Considerations 

 
Synthetic data has gained spotlight as a privacy-
preserving solution that aligns with regulatory 
guidelines such as GDPR, CCPA, and the EU AI 
Act. ElBaih (2023) contends that these structures 
impose stringent controls on data collection, 
storage, and processing to safeguard individual 
privacy. For example, GDPR requires strict 
handling of personally identifiable information 
(PII), mandating data minimization or 
anonymization (Pina et al., 2024; Olateju et al., 
2024). Synthetic data complies with these 
standards by offering a non-identifiable 
alternative that minimizes PII exposure and 
reduces the risk of data breaches. Similarly, the 
CCPA emphasizes consumer rights over 
personal data, reinforcing synthetic data's role in 
generating functional datasets without 
compromising privacy (Farhad, 2024; Olateju et 
al., 2024). The EU AI Act further strengthens 
these privacy standards by establishing 
structures for the use of synthetic data in 
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sensitive applications, promoting data privacy 
while supporting ethical AI development (Díaz-
Rodríguez et al., 2023; Salami et al., 2024). 
 

In spite of its privacy benefits, synthetic data 
introduces ethical challenges, especially 
regarding bias transfer. Breugel et al. (2024) 
explain that if the original datasets lack diversity, 
clarify data may acquire or even exacerbate 
existing biases, creating risks in fields like 
criminal justice and healthcare, where biased 
data could harm marginalized groups. Arora 
(2024) argues that without rigorous oversight, 
synthetic data could perpetuate societal biases, 
sabotaging fairness in AI applications. Moreover, 
Pezoulas et al. (2024) suggest that even 
synthetic data created for representational 
fairness may inadvertently reinforce existing 
biases if generated from flawed source data, 
highlighting the need for strong regulation to 
ensure ethical data techniques. 
 

Human-in-the-loop (HITL) systems have become 
a key approach to mitigate these risks, allowing 
experts to monitor and address biases in 
synthetic data pipelines. Akkem et al. (2024) 
highlight that HITL systems provide expert 
oversight at multiple stages, incorporating human 
judgment to identify biases that automated 
systems might miss. These frameworks involve 
domain experts assessing demographic 
representation and fairness, adjusting generation 
parameters to correct any biases detected. 
However, Sankar et al. (2024) point out that HITL 
systems are resource-demanding and encounter 
difficulties in establishing universal fairness 
standards. Striking a balance between 
automation and HITL oversight will be crucial for 
promoting ethical and responsible synthetic data 
practices in bias-sensitive AI applications. 
 

2.5 Comparing Synthetic Data with Real 
and Augmented Data 

 

Analyzying synthetic, real, and augmented data 
unveils distinct advantages and drawbacks, 
particularly in bias-sensitive AI applications. Real 
data, sourced from actual events, provides 
unparalleled authenticity and reflects complex 
social patterns. Nevertheless, it is frequently 
constrained by privacy regulations, such as 
GDPR, and demographic imbalances that can 
perpetuate biases in AI models (Trabelsi et al., 
2023; Samuel-Okon Akinola, et al., 2024). 
Augmented data, which is generated by applying 
modifications like rotation or noise to existing 
datasets, enhances the instability of real data but 
remains reliant on the differences of the source 

data, thus preserving any inherent biases 
(Alomar et al., 2023; Joseph et al., 2024).  
 
On the other hand, synthetic data, created 
algorithmically, allows for the incorporation of 
diverse demographic features without 
compromising privacy (Giuffrè & Shung, 2023; 
Selesi-Aina et al., 2024). Ferrara (2023) argues 
that synthetic data is particularly beneficial in 
facial recognition, where balanced demographic 
representation is crucial for fairness. Research 
has demonstrated that synthetic data can 
enhance model fairness and precision by 
addressing the underrepresentation of certain 
groups, as seen in areas like healthcare and 
facial recognition (Ferrara, 2023; Giuffrè & 
Shung, 2023; Goyal & Mahmoud, 2024). 
Nevertheless, Jiang, Chang, et al. (2024) 
suggest that synthetic data may lack the fine-
grained details present in real data, which could 
affect tasks dependent on subtle contextual 
cues, such as automated driving, where real or 
augmented data might better capture essential 
environmental nuances. 

 
Hybrid approaches, which combine synthetic, 
augmented, and real data, are increasingly 
recognized as effective strategies for creating 
balanced datasets. Wang et al. (2024) argue that 
by integrating the authenticity of real data, the 
variability of augmented data, and the 
demographic balance of synthetic data, hybrid 
datasets offer a thorough solution for mitigating 
bias. This approach is especially beneficial in 
applications such as customer service, where 
real engagements provide context and synthetic 
data fosters cultural inclusivity. Yet, managing 
these different data sources presents 
complexities and necessitates advanced tools for 
data integration and quality verification. As hybrid 
datasets become increasingly common, Al-kfairy 
et al. (2024) propose that creating standardized 
structures for combining and verifying these data 
types will be crucial to ensuring fairness and 
dependability in bias-sensitive AI applications, 
signaling a broader shift in AI advancement 
regarding ethical data practices and tactics for 
handling bias. 

 
3. METHODOLOGY 
 
This study employs a quantitative approach to 
assess synthetic data's role in reducing AI model 
bias. It is structured around three objectives: 
evaluating data generation techniques, analyzing 
bias mitigation, and assessing synthetic data 
quality.  
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3.1 Data Description 
 
Three datasets were selected for this study 
based on their relevance to demographic 
inclusivity and bias-sensitive applications: 
 

1. UCI Adult Dataset: Contains information 
on income classification based on 
attributes such as age, education, race, 
and gender. This dataset is widely used in 
bias research due to its demographic 
richness and inherent disparities. 

 
2. COMPAS Recidivism Dataset: Focuses 

on criminal justice outcomes, predicting the 
likelihood of recidivism. It is particularly 
notable for documented biases related to 
race and gender, making it an ideal test 
case for fairness evaluations. 

 
3. MIMIC-III Clinical Database: A healthcare 

dataset containing detailed patient data, 
including age, gender, and ethnicity, used 
for predictive modeling in clinical contexts. 
Its demographic variety and sensitivity to 
equity make it critical for assessing 
representational fairness. 

 
These datasets were chosen to represent 
diverse domains where demographic biases are 
prevalent, ensuring the results are generalizable 
across multiple applications. 
 

3.2 Synthetic Data Generation 
 

Synthetic data was generated for each             
dataset using Generative Adversarial Networks 

(GANs). The GAN architecture consisted of a 
generator and a discriminator trained               
iteratively to produce realistic synthetic          
samples. 
 

• Architecture and Parameters: 
 
o Generator: Fully connected neural network 

with 3 hidden layers and ReLU activation. 
o Discriminator: Neural network with 2 

hidden layers and Sigmoid activation for 
binary classification. 

o Optimization: Adam optimizer with a 
learning rate of 0.0002. 

o Loss Function: Binary Cross-Entropy. 
 

• Process: 
 

o For the UCI Adult Dataset, 10,000 
synthetic samples were generated, 
representing the original data's 
demographic attributes. 

o For the COMPAS Dataset, 8,000 synthetic 
samples were produced, focusing on 
balancing underrepresented demographic 
groups (e.g., minority racial groups). 

o For the MIMIC-III Dataset, 15,000 
synthetic samples were created to ensure 
comprehensive representation across age, 
gender, and ethnicity. 

 

Repeated fidelity tests were conducted to refine 
the generator's output, ensuring synthetic data 
closely mirrored the statistical properties of the 
original datasets. In GANs, a generator GGG and 
discriminator DDD optimize data realism through 
a minimax game, formulated as: 

 

𝐸𝑥 ∼ 𝑋𝑟𝑒𝑎𝑙   [𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧 ∼𝑝(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] … … . .                                                           𝐸𝑞1 

 

Where z is sampled from p(z), driving G to approximate the original distribution. KL Divergence is 
defined as: 
 

𝐷𝐾𝐿( 𝑃 ∣∣ ∣∣ 𝑄 ) = ∑  

 

𝑖

𝑃(𝑥𝑖)𝑙𝑜 𝑔
𝑃(𝑥𝑖)

(𝑄(𝑥𝑖))
… … …                                                                                       𝐸𝑞2 

 

Measures distributional similarity, while the Inception Score (IS) evaluates diversity: 
 

𝐼𝑆 =𝑒𝑥𝑝 𝑒𝑥𝑝 (𝐸𝑥 ∼ 𝐺[𝐷𝐾𝐿(𝑝(𝑦))]) … … …                                                                                                   𝐸𝑞3 
 

For bias mitigation (Objective 2), the COMPAS Dataset was used, emphasizing demographic balance 
in race and gender for recidivism predictions. Logistic regression, expressed as: 
 

𝑙𝑜 𝑔 (
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝛽0 + ∑  

𝑛

𝑖=1

𝛽𝑖𝑋𝑖 … … …                                                                                                        𝐸𝑞4 

 

was trained on synthetic data, with Demographic Parity: 
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𝑃(𝐴 = 1) = 𝑃(𝐴 = 0) … … … .                           𝐸𝑞5 
 
And Equality of Opportunity: 
 

𝑃(𝑌 = 1, 𝐴 = 1) = 𝑃(𝑌 = 1, 𝐴 = 0) … … … . 𝐸𝑞6 
 
as fairness metrics. 
 
The MIMIC-III Clinical Database tested fidelity 
and diversity (Objective 3). Fidelity was assessed 
with the Kolmogorov-Smirnov (KS) test: 
 

𝐷 =∣ 𝐹𝑟𝑒𝑎𝑙(𝑥) − 𝐹𝑠𝑦𝑛(𝑥) ∣  … … … .                   𝐸𝑞7 

 

Meanwhile, representational diversity across 
demographic variables confirmed balanced 
representation. Model predictive power was 
compared using Accuracy and AUC-ROC: 
 

𝐴𝑈𝐶 = ∫  
∞

−∞

𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑢)) 𝑑𝑢 … … … .      𝐸𝑞8 

 

where high AUC values indicated strong 
performance and demographic fairness across 
predictions. 
 

3.3 Model Training and Testing 
 
Logistic regression models were trained and 
tested on both original and synthetic datasets to 
evaluate fairness and predictive performance. 
 

• Data Splits: 
 
o The datasets were split into 70% training, 

20% validation, and 10% testing sets. 
o Synthetic data was used as the training set 

for models assessing bias mitigation, while 
the original data served as a benchmark 
for comparison. 
 

• Training Process: 
 
o For each dataset, models were trained 

using cross-entropy loss with early 
stopping based on validation accuracy to 
prevent overfitting. 

o Separate models were trained for fairness 
metrics (e.g., demographic parity) and 
performance metrics (e.g., accuracy, AUC-
ROC). 

 

3.4 Metrics and Validation 
 
A comprehensive set of metrics was employed to 
assess synthetic data's effectiveness in bias 
mitigation and fidelity: 

• Fairness Metrics: 
 

o Demographic Parity: Ensures prediction 
probabilities are independent of 
demographic attributes. 

o Equality of Opportunity: Measures equal 
predictive outcomes for individuals meeting 
the same criteria across demographic 
groups. 

 

• Fidelity Metrics: 
 

o Kolmogorov-Smirnov (KS) Test: 
Evaluates distributional similarity for 
continuous features (e.g., age). 

o Kullback-Leibler (KL) Divergence: 
Assesses alignment between original and 
synthetic categorical features (e.g., race, 
gender). 

o Inception Score (IS): Quantifies diversity 
in synthetic samples. 
 

• Performance Metrics: 
 

o Accuracy: Assesses overall model 
predictive power. 

o AUC-ROC: Evaluates the trade-off 
between sensitivity and specificity. 

 

• Validation: 
 

o Metrics were applied iteratively to validate 
synthetic data quality and ensure 
alignment with fairness objectives. 

o Hypotheses were formulated to assess 
whether synthetic data improved fairness 
metrics without compromising 
performance. Repeated fidelity testing 
ensured statistical reliability across diverse 
features. 

 

4. RESULTS  
 

4.1 Evaluation of Synthetic Data 
Generation Techniques 

 

To assess the effectiveness of GAN-generated 
synthetic data in replicating the demographic 
characteristics of the UCI Adult Dataset, the 
Kolmogorov-Smirnov (KS) test was applied to 
continuous data (age) to measure distributional 
similarity, and KL Divergence was calculated for 
categorical features (gender, race, education, 
and income level) to evaluate alignment with the 
original dataset. Additionally, the Inception Score 
(IS) assessed the diversity within the synthetic 
samples, ensuring a broad representation of 
demographic characteristics. The results are 
presented in Table 1. 
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Table 1. Evaluation of demographic feature alignment between synthetic and original data 
 

Feature Metric Value p-value Inception Score 

Age Kolmogorov-Smirnov (KS) Test 0.0300 0.7594 7.63 
Gender KL Divergence 0.0000 - 7.63 
Race KL Divergence 0.0004 - 7.63 
Education KL Divergence 0.0028 - 7.63 
Income Level KL Divergence 0.0023 - 7.63 

 

 
 

Fig. 1. KL Divergence for categorical features 
 
The values in Table 1 summarize the alignment 
between the synthetic and original dataset 
across demographic features, reflecting the 
effectiveness of the GAN-generated data. The 
KS test for Age yielded a statistic of 0.030                 
with a high p-value of 0.759, indicating no 
statistically significant difference between the 
synthetic and original age distributions. This 
close alignment shows that the synthetic            
data effectively preserves the original age 
structure. 
 
For categorical features (Gender, Race, 
Education, and Income Level), KL Divergence 
values are consistently low. Gender achieved a 
KL Divergence of 0.000, indicating an almost 
perfect match with the original data, while Race, 
Education, and Income Level have divergence 
values of 0.0004, 0.0028, and 0.0023, 
respectively. These low values demonstrate 
minimal divergence between synthetic and 
original distributions, underscoring the GAN's 

capability to replicate demographic balance 
across features. 
 
The Inception Score (IS) of 7.63, as shown 
across all features in Table 1, represents overall 
diversity within the synthetic data. A high IS 
implies that the generated data effectively 
captures demographic variation, essential for 
avoiding over-representing any single 
demographic profile. 

 
The visual analysis through Fig. 1 (Bar Plot of KL 
Divergence for Categorical Features) further 
supports these findings. The bar plot illustrates 
that all categorical features achieved minimal KL 
Divergence values, with Gender showing no 
measurable divergence and Race, Education, 
and Income Level demonstrating strong 
alignment with the original dataset. The low 
divergence values confirm that the synthetic data 
retains a balanced demographic distribution, 
essential for minimizing bias in model training. 
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Fig. 2. (Scatter Plot for KS Test and KL Divergence with Inception Score Overlay) 
 

Table 2. Comparison of fairness and performance metrics for models trained on original vs. 
synthetic data 

 

Metric Original Dataset Synthetic Dataset 

Demographic Parity (Race) 0.72 0.89 
Demographic Parity (Gender) 0.68 0.87 
Equality of Opportunity (Race) 0.65 0.83 
Equality of Opportunity (Gender) 0.66 0.84 
Accuracy 0.83 0.82 
AUC-ROC 0.81 0.80 

 
In Fig. 2 (Scatter Plot for KS Test and KL 
Divergence with Inception Score Overlay), the 
scatter plot presents the KS and KL statistics for 
each feature alongside the Inception Score. This 
visualization highlights the synthetic data’s 
fidelity across both continuous and categorical 
variables while concurrently displaying the data 
diversity. The stable Inception Score across all 
features reflects the comprehensive 
demographic spread within the synthetic dataset. 
 

4.2 Analysis of Bias Mitigation through 
Synthetic Data 

 

To evaluates the effectiveness of synthetic data 
in mitigating bias within models trained on the 
COMPAS Recidivism Dataset. Key fairness 
metrics, including Demographic Parity and 
Equality of Opportunity, were calculated for both 
race and gender to determine the extent to which 
synthetic data reduces bias. Model performance 
metrics (Accuracy and AUC-ROC) are also 
assessed to ensure predictive power is 
maintained. 
 

The values in Table 2 illustrate a notable 
improvement in fairness metrics for models 
trained on synthetic data without a significant 
loss in predictive accuracy or AUC-ROC. For 
instance, Demographic Parity values for both 
race and gender are higher for the synthetic 
dataset-trained model (0.89 and 0.87) than for 
the original dataset (0.72 and 0.68), indicating 
more balanced prediction rates across 
demographic groups. This enhancement 
suggests that synthetic data is effective in 
promoting fairness across different demographic 
segments. 
 
Similarly, Equality of Opportunity scores show 
improvement when synthetic data is used. For 
race, the Equality of Opportunity score increases 
from 0.65 in the original data to 0.83 in the 
synthetic dataset, while for gender, the score 
rises from 0.66 to 0.84. These gains in fairness 
metrics demonstrate that synthetic data 
contributes positively to ensuring equitable 
outcomes across demographic groups, aligning 
with the goal of bias mitigation. 
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Fig. 3. Fairness metrics comparison: original vs. synthetic data 
 

 
 

Fig. 4. Model performance metrics: original vs. synthetic data 
 

Fig. 3 (Fairness Metrics Comparison: Original vs. 
Synthetic Data) visually supports these findings 
by comparing Demographic Parity and Equality 
of Opportunity across both datasets for race and 
gender. The bar chart shows a significant 
increase in fairness metrics for models trained   
on synthetic data, highlighting the GAN’s                
ability to generate balanced demographic 
distributions and support fairer AI               
outcomes. 
 
Fig. 4 (Model Performance Metrics: Original vs. 
Synthetic Data) displays the model performance 
in terms of Accuracy and AUC-ROC. The line 
plot indicates that the predictive power remains 
stable, with minimal differences between the 
models trained on original and synthetic data 

(Accuracy: 0.83 vs. 0.82, AUC-ROC: 0.81 vs. 
0.80). This close alignment demonstrates that 
the synthetic data does not compromise the 
model’s predictive performance, even as it 
enhances fairness. 
 
The relationship between fairness and 
performance metrics is further illustrated in Fig. 5 
(Fairness vs. Performance Metrics: Original vs. 
Synthetic Data), a scatter plot that captures the 
distribution of fairness scores in relation to 
performance metrics for both datasets. This plot 
shows that synthetic data improves fairness 
metrics substantially while maintaining 
comparable performance levels, underscoring 
the dual benefit of using synthetic data for bias 
mitigation. 
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Fig. 5. Fairness vs. performance metrics: original vs. synthetic data 
 

 
 

Fig. 6. Radar chart for representational diversity 
 

Table 3. Quality and fairness metrics for original vs. synthetic data 
 

Metric Original Dataset Synthetic Dataset 

Kolmogorov-Smirnov (KS) Test - Age 0.03 0.02 
Kolmogorov-Smirnov (KS) Test - Gender 0.02 0.01 
Kolmogorov-Smirnov (KS) Test - Ethnicity 0.04 0.03 
Accuracy 0.88 0.87 
Representational Diversity (Age) 0.76 0.75 
Representational Diversity (Gender) 0.78 0.77 
Representational Diversity (Ethnicity) 0.79 0.78 

 

4.3 Assessment of Quality and Fairness 
of Synthetic Data 

 

To assess the quality and fairness of              
synthetic data generated from the MIMIC-III 
Clinical Database, key metrics were evaluated,                

including fidelity (measured by KS Test                   
values across age, gender, and ethnicity), 
accuracy, and representational diversity, which 
examines the demographic balance within the 
synthetic data. The result is presented in               
Table 3. 



 
 
 
 

Fabuyi; J. Eng. Res. Rep., vol. 26, no. 12, pp. 24-46, 2024; Article no.JERR.127156 
 
 

 
37 

 

 
 

Fig. 7. Heatmap of KS test and accuracy scores 
 
Table 3 demonstrates a high level of alignment 
between the original and synthetic datasets in 
terms of quality and fairness metrics. The KS 
Test values for age, gender, and ethnicity are all 
low, with only minor differences between the 
datasets, indicating that the synthetic data 
maintains strong fidelity to the original 
demographic distributions. For example, the KS 
Test value for age in the synthetic data is 0.02, a 
slight improvement over the original dataset’s 
0.03, suggesting minimal divergence between 
the distributions. 
 
The Accuracy scores are comparable for both 
datasets, with the original dataset scoring 0.88 
and the synthetic dataset achieving 0.87. This 
minimal difference suggests that the synthetic 
data effectively preserves predictive 
performance, ensuring that quality is not 
compromised in the generation process. 
 
Representational Diversity scores across age, 
gender, and ethnicity are close in value for both 
datasets. For example, gender diversity is 0.78 in 
the original data and 0.77 in the synthetic data, 
indicating that the synthetic data maintains 
demographic balance effectively, crucial for 
achieving fair outcomes in healthcare 
applications. 
 
Fig. 6 (Radar Chart for Representational 
Diversity) illustrates representational diversity 
across age, gender, and ethnicity for both 

datasets. The radar chart shows a similar shape 
and spread for both datasets, confirming that the 
synthetic data achieves demographic balance 
close to that of the original data. This alignment 
is essential for healthcare applications, where fair 
representation across patient demographics is a 
priority. 
 
Fig. 7 (Heatmap of KS Test and Accuracy 
Scores) provides a visual summary of KS Test 
values for age, gender, and ethnicity alongside 
accuracy scores. These findings demonstrate the 
synthetic data’s ability to preserve both quality 
and fairness in alignment with the study's 
objective of reducing bias in AI models trained for 
healthcare applications. 
 

5. DISCUSSION 
 
The results of this study underscore the potential 
of synthetic data as a strategic tool to address 
biases in AI model training, aligning with a 
growing body of literature that advocates for 
synthetic data’s role in creating fairer and more 
inclusive AI systems. In the evaluation of 
synthetic data generation techniques which is the 
major focus of objectives one, the findings 
showed that the GAN-generated synthetic data 
maintained demographic alignment with the 
original UCI Adult Dataset, as evidenced by the 
Kolmogorov-Smirnov (KS) test and low KL 
Divergence values across key demographic 
features (see Table 1). The high Inception Score 
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across all features further demonstrated diversity 
within the synthetic samples, essential for 
ensuring representational inclusivity in model 
training. These findings resonate with previous 
studies, which highlight GANs’ effectiveness in 
replicating real-world distributions and 
maintaining demographic representation within 
synthetic datasets (Offenhuber, 2024; Ferrara, 
2023). 
 
Moreover, in the analysis of bias mitigation 
through synthetic data, the focus of objectives 
two, synthetic datasets trained on the COMPAS 
Recidivism Dataset showed considerable 
improvements in fairness metrics, including 
Demographic Parity and Equality of Opportunity, 
without compromising model performance (Table 
2). Demographic Parity scores increased 
significantly for both race and gender, and similar 
trends were observed in Equality of Opportunity, 
which is critical in minimizing outcome disparities 
across groups. These results align with existing 
research that suggests synthetic data can 
support fairer outcomes by achieving 
demographic parity across sensitive attributes 
(Giguere et al., 2022; Pagano et al., 2023). 
Notably, accuracy and AUC-ROC scores were 
nearly identical for models trained on synthetic 
versus original datasets, demonstrating that the 
fairness improvements did not come at the 
expense of predictive performance, which 
concurs with prior studies that emphasize 
synthetic data’s capability to retain model 
accuracy (Pezoulas et al., 2024). 
 
Further analysis in the assessment of quality and 
fairness of synthetic data, the main focus of 
objectives three validated the synthetic data’s 
fidelity, representational diversity, and accuracy 
when compared to the original MIMIC-III Clinical 
Database (Table 3). KS Test values for age, 
gender, and ethnicity were notably low, with 
marginal differences from the original dataset, 
indicating robust fidelity—a result consistent with 
findings from prior research that posits synthetic 
data’s ability to mirror complex real-world 
distributions accurately (Raghavan et al., 2024). 
The minimal difference in accuracy between 
synthetic and original datasets (0.87 vs. 0.88) 
reinforces the efficacy of synthetic data in 
healthcare applications where predictive 
precision is paramount, aligning with existing 
literature that advocates for synthetic data’s 
potential to maintain model performance in 
critical domains such as healthcare and 
autonomous systems (Murray et al., 2023; 
Joseph, 2024). 

Visual analyses further substantiate these 
quantitative results. The bar plot of KL 
Divergence values (Fig. 1) for categorical 
features supports the statistical findings, with 
minimal divergence for gender, race, education, 
and income, confirming that the synthetic data 
effectively retains demographic balance. 
Additionally, the scatter plot (Fig. 2) illustrating 
the KS and KL statistics alongside the Inception 
Score highlights the synthetic data’s fidelity and 
diversity, encapsulating its suitability for fairer 
model training. Similar benefits were observed in 
fairness metric visualizations (Figs. 3 and 5) for 
the COMPAS dataset, where the synthetic data 
demonstrated a marked increase in fairness 
without significant compromise on performance 
metrics, a pattern that reinforces synthetic data’s 
dual benefits in fairness and predictive reliability 
(Bhambri & Rani, 2024; Guardieiro et al., 2023). 
 
Radar and heatmap visualizations (Figs. 6 and 7) 
underscore the synthetic data’s demographic 
balance and fidelity for healthcare-focused 
applications, as they showcase comparable KS 
Test values and representational diversity across 
age, gender, and ethnicity. These results 
resonate with the findings of Jiang et al. (2024), 
who highlight the importance of fidelity and 
demographic spread for AI applications in 
regulated environments, such as healthcare, 
where diverse demographic representation is 
essential for ensuring equitable access to 
services. The radar chart, in particular, reinforces 
the visual alignment of synthetic and original 
datasets across demographics, a critical feature 
in addressing AI biases as emphasized in studies 
by Melzi et al. (2024) and Giuffrè & Shung 
(2023). 
 
Notably, the study’s results align with ethical and 
regulatory frameworks that prioritize fairness and 
accountability in AI systems. The data 
preservation of demographic diversity aligns with 
principles outlined in GDPR, CCPA, and the EU 
AI Act, which mandate ethical and equitable AI 
practices (ElBaih, 2023; Salami et al., 2024). 
Synthetic data’s compliance with these 
regulations is further validated by the ability to 
maintain balanced representation across 
demographic groups without infringing on 
privacy—a priority in sensitive fields like criminal 
justice and healthcare, where privacy risks and 
demographic biases can hinder fairness (Breugel 
et al., 2024; Arora, 2024). The alignment with 
regulatory frameworks in this study reflects a 
broader trend noted in previous research, 
advocating for synthetic data as a viable 
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alternative to real-world data in bias-sensitive 
domains (Aldoseri et al., 2023; Morley et al., 
2021). 

 
These findings support the broader argument 
that synthetic data can be an effective solution to 
demographic imbalances, provided that its 
generation and validation processes are 
conducted with rigor. Studies by Akkem et al. 
(2024) and Sankar et al. (2024) highlight the 
need for human-in-the-loop (HITL) systems to 
oversee data generation and mitigate residual 
biases, a point reinforced by the consistency 
observed across demographic features in the 
current study. Human oversight remains a critical 
component, particularly in applications where 
demographic nuances are essential for accurate 
and fair predictions. The synthetic data’s success 
in balancing fairness metrics and fidelity without 
significantly impacting model accuracy reinforces 
the utility of synthetic data as an equitable 
solution in AI training, mirroring findings by 
Arigbabu et al. (2024) and Siddique et al. (2024) 
who advocate for synthetic data’s role in 
promoting fairness and reliability across diverse 
applications. 

 
6. CONCLUSION AND RECOMMENDA-

TION 
 
This study demonstrates that synthetic data                
can effectively mitigate biases in AI models          
while maintaining accuracy and demographic 
representation across applications. By evaluating 
synthetic data generation, bias mitigation,                
and quality assessment, this research                    
shows synthetic data’s capacity to correct 
demographic imbalances, improve fairness 
metrics, and promote equitable model outcomes. 
Across datasets and fairness metrics, synthetic 
data aligned well with real data in demographic 
distribution, fidelity, and predictive power, 
confirming its reliability as a substitute                          
in bias-sensitive applications where real data 
may be limited. Findings highlight synthetic 
data’s role in supporting inclusivity in                       
model training and compliance with ethical 
standards in data regulations. To maximize these 
benefits, further refinement in generation 
processes is essential to address any remaining 
biases. 
 

1. Enhance generative models with advanced 
architectures, such as improved GANs or 
hybrid methods, to increase demographic 
fidelity and diversity, minimising residual 
biases.  

2. Incorporate human-in-the-loop (HITL) 
systems to detect demographic 
imbalances that automated systems may 
overlook, promoting fairer outcomes 
across applications.  

3. Establish industry-wide standards for 
validating synthetic data quality and 
fairness, using metrics like demographic 
parity and representational diversity to 
ensure transparency and consistency.  

4. Encourage alignment with evolving data 
regulations such as GDPR and the EU AI 
Act to strengthen synthetic data’s 
effectiveness in bias mitigation and support 
public trust in AI applications. 
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