
_____________________________________________________________________________________________________ 
 
*Corresponding author: E-mail: shantanu@barc.gov.in; shantanu.das@live.com; 
 
 
 

Asian Journal of Research and Reviews in Physics 
 
2(1): 1-17, 2019; Article no.AJR2P.47561 
 

 
 
 

 

Theoretical Verification of the Formula of Charge 
Function in Time of Capacitor (q = c*v) for Few 

Cases of Excitation Voltage 
 

Shantanu Das1,2* 
 

1
Bhabha Atomic Research Center (BARC) Mumbai, India.

 

2Department of Physics, Jadavpur University, Kolkata, India. 
 

Author’s contribution  
 

The sole author designed, analysed, interpreted and prepared the manuscript. 
 

Article Information 
 

DOI: 10.9734/AJR2P/2019/v2i130091 
Editor(s): 

(1) Dr. Jelena Purenovic, Assistant  Professor, Department of Physics and Materials, Faculty of Technical Sciences, 
Kragujevac  University, Cacak, Serbia. 

Reviewers: 
(1) Igor Simplice Mokem Fokou, University of Yaounde, Cameroon. 

(2) Hardiansyah, Tanjungpura University, Indonesia. 
(3) Ali Algaddafi, The University of Sirte, Libya. 

(4) John Michael Nahay, Rutgers University, USA. 
Complete Peer review History: http://www.sdiarticle3.com/review-history/47561 

 
 

 
 

Received 11 November 2018  
Accepted 23 February 2019 

Published 12 March 2019 

 
 

ABSTRACT 
 

We have a developed and derived a formula for capacitor i.e. charge as a function of time, which is 
convolution operation of time varying capacity function and time-varying voltage function. This is 
different to the usual and conventional way of writing capacitance multiplied by voltage to get 
charge stored in a capacitor. This new deliberation with convolution operation works well for 
classical capacitors (i.e. ideal loss less capacitors), that is of a constant capacity at all frequencies, 
and also for a time varying capacity function given by decaying power-law: that gives the formation 
of a fractional capacitor. In this paper, we use this developed new charge storage expression and 
apply to various types of inputs excitation voltage-sinusoidal, step, ramp voltage and then analyze 
and interpret the results for charge stored, the current expressions, the loss-tangent and the 
memory effects. With this new formulation, we also evaluate impedance function of a classical 
capacitor as well as a fractional capacitor, and also elaborate on the Nyquist’s diagram, that is 
employed to study various dielectric materials via impedance spectroscopy. This new approach of 
charge storage concept is yet to be practically as well as theoretically applied-though some initial 
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work has started. This paper gives a theoretical validity test i.e. analytically obtained in several 
applications for this new formulation, of charge storage formula. This paper will be useful in various 
super-capacitor studies, dielectric relaxation experiments, and impedance spectroscopy for various 
material developments for electrical energy storage missions; however, this concept is yet to be 
used to its full potential. 

 
 
Keywords: Capacity function; fractional capacitor; fractional derivative; convolution; laplace transform; 

memory effect; Nyquist’s diagram; Curie-von Schweidler law; loss tangent. 

 
1. INTRODUCTION 

 
The new formulation of charge function in time is 

q(t) c(t)*v(t)  derived in detail; with c(t)  for ideal 

loss less capacitor case, as well as time varying 
capacity function (fractional capacitor) case in 
[1].  The operation (*) is the convolution operator 

[1]. The capacity function c(t) is the function 

which decays with time, and has the form of 
singular power law c(t) t ; 0 1   and this acts 

only at the time of application of voltage change

v(t) . For ideal case of loss-less capacitor the 

capacity function is c(t) (t) ; [1]. We will use 

this formula
t

0
q(t) c(t)*v(t) c(t )v( )d      and 

discuss various cases for v(t) as sinusoidal 

voltage excitation, step voltage excitation, ramp 
voltage excitation. We give interpretations for all 
the theoretical derived results with this new 
approach and will verify the results in each case. 
We will use the memory-effect [2,3,4,5] using this 
new formulation; which can only be observed for 
a case of fractional capacitor. In this paper we 
will always take the exponent,  , in the power-

law decaying capacity function, c(t) t  to be 

between zero and one: 0 < α < 1. 

 
This power-law decay function is singular at 

t = 0 t=0 and is consistent with the singular 
power-law-decay relaxation current given by the 
Universal Dielectric Response (UDR) of Curie, 
von Schweidler & Jonscher [6-9]. The use of this 
universal dielectric relaxation (UDR) law gives 
current voltage relation of a capacitor as given by 

fractional derivative [2-12]; i.e. 
α
ti(t) D v(t)  .The 

non-singular decaying function for i(t) and c(t)  

gives all together different form of current voltage 
relations for capacitor is discussed in [13,14]. 
There is lot of pioneering work dealing with 
usage of non-singular functions in various 
system dynamics studies [15-26]. In this paper 
we will deal with singular function as response 

function inc(t) t , and i(t) t as per universal 

dielectric relaxation law of Curie-von Schweidler.  
 

We note a priori that the constant C  is 

proportionality constant for power-law capacity 
function i.e. c(t) t  and not ‘fractional capacity’ 

for fractional capacitor. The ‘fractional capacity’ 
of a fractional capacitor we will represent in this 

paper as FC  which has units of 
1Farad / sec 

[1,2,3,5]. We assume that the fractional capacitor 
has no resistance, (like ideal capacitor has no 
resistance) and is excited by ideal voltage source 
(having output impedance as zero). We will use 
Laplace Transform technique in all analysis to 

get stored charge expression q(t)  and then the 

current i.e. 
 

i(t)  . In all the cases in subsequent sections, we 

will apply this new formula i.e. q(t) c(t)*v(t)  

and give the validity justification by 

interpretations of the result. The voltage, v(t)  

across a capacitor or dielectric changes at a rate 

in proportion to the current:  1
ti(t) = D c(t)*v(t)

., with 
-α

αc(t) = C t  we get 

   1
ti(t) = c(t) v(0) + c(t)* D v(t) [1]. This relaxation 

law is detailed in [1], for ideal capacitor as well as 
fractional capacitor; derived from

q(t) c(t)*v(t) . The time varying capacity 

function c(t)  is the one that defines the 

response function; and by principle of causality 

we write q(t) c(t)*v(t) ; where v(t)  is the 

input impressed voltage.  The operation ( * ) is 
the convolution operation [1]. This is contrary to 
usual usage of formula i.e. q(t) c(t)v(t) where the 

product of the two is used. 
 

This paper is organized as several sections. 
Section-2 deals with use of formula

q(t) c(t)*v(t) for input v(t)  as sinusoidal 

excitation, and interpretations for classical 
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capacitor and fractional capacitor, results of 
phase angle, and loss-tangent. Section-3 deals 

with use of q(t) c(t)*v(t) , to have 

impedance expression Z(s)  for classical 

capacitor and fractional capacitor. Section-4 
describes the impedance function obtained from

q(t) c(t)*v(t)   used to interpret Nyquist’s 

plot for a fractional capacitor, and to extract the 

values of fractional capacity FC  in units of

1Farads / sec 
, and interpretations. Section-5 

deals with usage of the formula 

q(t) c(t)*v(t) for a step input excitation, 

while Section-6 describes the memory effect that 
we interpret from Section-5. The Section-7 deals 

with excitation v(t) as ramp-voltage. In the 

Section-8 we compare the charge q(t)  for the 

cases of step input and ramp input. In Section-9 
we have discussion on the observations and 
inferences of the paper, followed by Conclusion 
References and Acknowledgement.  We reiterate 
this new formula is still not widely used anywhere 
for theoretical or practical studies. However                
in a recent study [27] the validation of                     

the new formulation q(t) c(t)*v(t) via 

experimentation is carried out.  This paper is 
made from presentations and deliberations for 
the project [28]. We plan to use this new concept 
in studies of charge storage in super-capacitor as 
continuation of the project [28].   
 

2. CHARGE STORAGE BY SINUSOIDAL 
VOLTAGE EXCITATION TO A 
FRACTIONAL CAPACITOR AND IDEAL 
CAPACITOR  

  
2.1 Excitation by Voltage Signal as 

Cosine Function 
 
Sinusoidal voltage of cosine wave form is applied 
to an uncharged capacitor. We write

m 0v(t) V cos t  , at applied at t 0  . Then 

charge function in time is given as convolution 
operation for a time varying capacity function 

described as c(t) C t , 0 1    for a 

fractional capacitor as following 
 

   m 0q(t) c(t)*v(t) C t * V cos t
      

(1) 
 

We note that the capacity function in the form i.e.  

c(t) C t , implies a fractional capacitor that 

is given by ti(t) D v(t) , (where tD
is 

fractional derivative of order   w.r.t. variable t ) 
i.e. the relation of current and voltage via 
fractional derivative [2-12]. For classical ideal 

capacitor we have
1
ti(t) D v(t)  .We apply 

Laplace Transform to the above Eq. (1) and write 
the following 
 

      q(t) c(t)* v(t) ; Q(s) C(s) V(s)                                                          (2)                                                     

 

In Eq. (2) we have   (1 )C(s) C t C (1 )s  
     and   m

2 2
0

V s

m 0 s
V(s) V cos t


   . This 

gives Q(s) as follows 
 

  

αα m α 0m
1-α 2 2 2 2

0 0 0

αm α
t 0

0

C Γ(1- α) V C Γ(1- α) ωV s
Q(s) = = s

s s + ω ω s + ω

V C Γ(1- α)
= D sinω t

ω

    
    

    



                                            (3) 

 

In above steps of Eq. (3) we used Laplace Transform of Fractional Derivative as 

 tD f (t) s F(s)  with f (0) 0 and 0 < α < 1  [12,29,30] and   2 2
a

s a
sin at


 . Taking the 

inverse Laplace transform of the above Eq. (3), we get the following 
 

   m m F
t 0 t 0

0 0

V C (1 ) V C
q(t) D sin t D sin t   

   
 

                                                (4) 
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Here in Eq. (4) we have introduced a constant FC C (1 )    as fractional capacity in units of 

1-αFarad / sec  [1,2,3,10,11,13]; this we will elaborate later subsequently. We have fractional derivative 

of sin(x) as following [29,30] 
 

 
1 3

x 2

d sin(x) x x
D sin(x) sin x ...

dx ( ) ( 2)

    
      

   
                                                        (5)     

 

We note that symbol xD f (x)
is written as

α αd f(x) / dx in Eq. (5).   We write 0x t  thus we have

0dx dt  that gives 0(dt) dx   . With this substitution in Eq. (5) we write in equation (6) following 

from Eq. (4) 
 

 
1 3

m F 0 m F 0 0
0 21

0 0

V C d sin( t) V C ( t) ( t)
q(t) sin t ...

dt ( ) ( 2)

    
  

 

   
       

       

                                 (6)   

 

The transient terms i.e.
1t 

,
3t 

, … ( 0 1    ) in the Eq. (6) expression decays to zero for large 

times (as in limit t   ) . Thus we write the steady state charge function from Eq. (6) as following  
 

 1
m F 0 0 2q(t) V C sin t 

                                                                                             (7) 

   

From Eq. (7) we get the steady state current as following 
 

    1
m F 0 0 m F 0 02 2

dq(t) d
i(t) V C sin t V C cos t

dt dt
  

                                                    (8) 

 

This Eq. (8) shows at steady state the current in fractional capacitor leads the voltage by angle  
which is true and also this is a practical way to validate experimentally a fractional integrator or 

differentiator circuits, by sinusoidal input [12]. The leading current is     to voltage excitation for 

ideal loss less capacitor where ( 1  ). This result we obtained by use of q(t) c(t)*v(t) .  
 

In the following steps to re-write above Eq. (8)  
 

  

   

1
m 0 02 2 2

(1 ) (1 )1
m 0 0 p 02 2

1 1
p m 0 m F 0

q(t) V C (1 ) sin t

V C (1 ) cos t Q cos t

Q V C (1 ) V C

   


   


 
 

       

        

     

                                               (9) 

 

We observe in Eq. (9) 
p 0q(t) Q cos( t )   that 

charge-function q(t) lags voltage function v(t)  at 

steady state by angle
(1 )

2

   .  

 

From Eq. (9) we see for 1  i.e. for ideal 

capacitor there is no phase difference   (lag) 

between charge function and voltage function [1]. 
This is for ideal loss less capacitor where 

capacity function is 1c(t) C (t)  ; [1] and we 

have 0  . This we verify by using q(t) c(t)* v(t)

, for ideal capacitor
1c(t) C (t)   . We get 

 

      2 2
0

s
1 m 0 m 1 s

Q(s) C (t) V cos t V C


    
 

Then we get m 1 0 m 0q(t) V C cos t Q cos t    , 

that is in same phase with voltage function v(t) ; 

[1], with 0  . 

 
2.2 Excitation by Voltage Signal as Sine 

Function 
 
Let a sinusoidal voltage be applied to an 

uncharged capacitor m 0v(t) = V sinω t , at time 

t 0  for a fractional capacitor given by capacity 
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function
-α

αc(t) = C t . We write charge q(t)  by 

using the formula q(t) c(t)*v(t) as following 
 

   -α
α m 0q(t) = c(t) * v(t) = C t * V sinω t    (10) 

 

We apply Laplace Transform to the above and 
write the following Eq. (11) 
 

   q(t) c(t)*v(t)

Q(s) = C(s)V(s)

 
                        (11) 

 

We have  -α -(1-α)
α αC(s) C t C Γ(1- α)s  and

  m 0
2 2

0

V ω

m 0 s +ω
V(s) V sinω t = . This gives Q(s) as 

follows 
 

  

α-1α m 0 0
m α1-α 2 2 2 2

0 0

α-1
m α t 0

C Γ(1 - α) V ω ω
Q(s) = = V C Γ(1 - α) s

s s + ω s + ω

V C Γ(1 - α) D sinω t

    
    

     

 
                                        (12) 

 

In above Eq. (12) we used Laplace Transform of Fractional Derivative for 0 < α < 1  as 

 α α
tD f(t) s F(s) with f(0) = 0  [12,29,30] and   2 2

a

s +a
sinat  . Taking the inverse Laplace 

transform of the Eq. (12), we get the following 
 

 α-1
m α t 0q(t) = V C Γ(1- α) D sinω t                                                                                         (13) 

 

From the formula as noted above Eq. (5) for 
α
xD sinx we get by replacing α with α -1 the following 

 

 
α-1 -1-(α-1) -3-(α-1)

(α-1)πα-1
x 2α-1

d sin(x) x x
D sin(x) = = sin x + + - + ...

dx Γ(-(α -1)) Γ(-(α -1) - 2)
                        (14) 

 

Since 0 < α < 1and for limit x   the terms in Eq. (14) i.e.
-1-(α-1)x , 

-3-(α-1)x …goes to zero, and we 
write, the following for large x , the steady state solution 
 

 
α-1

(α-1)πα-1
x 2α-1

d sin(x)
D sin(x) = = sin x +

dx
                                                                             (15) 

 

With change of variables as 0x = ω t , we have
α-1 α-1 α-1

0(dx) = ω (dt) , we write the following 

 

 
α-1 α-1

(α-1)π0
0 2α-1 α-1 α-1

0

d sin(x) 1 d sin(ω t)
= =sin ω t +

dx ω dt
                                                                         (16) 

 

Using  (α-1)πα-1 α-1
t 0 0 0 2D sin(ω t) = ω sin ω t +  from Eq. (16) we write steady state charge as follows 

 

 

 

α-1
(α -1)πα -10

m α m α 0 0 2α-1

(1-α)πα -1
m F-α 0 0 2

d sin(ω t)
q(t) = V C Γ(1 - α) = V C Γ(1 - α)ω sin ω t +

dt

= V C ω sin ω t -

 
 
                            (17) 

The charge q(t)  lags the voltage function v(t) by an angle
(1-α)π

2 . We differentiate Eq. (17) and write 

the current as follows 
 

   

 

(1-α)πα-1 α π απ
m F-α 0 0 0 m F-α 0 02 2 2

α απ
m F-α 0 0 2

dq(t)
i(t) = = V C ω ω cos ω t - = V C ω cos ω t - +

dt

= V C ω sin ω t +

                               (18)      
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The current leads voltage by angle απ
2 for 

fractional capacitor. 
 

2.3 Interpretation of the Sinusoidal 
Analysis 

 

From Eq. (9) we see that
(1 )

2

   . The lagging 

phase angle of charge function q(t) is time 

invariant or a constant, for a fractional capacitor, 
if we assume  constant. In [2,3] it is discussed 
that loss tangent of a fractional capacitor, that 
follows Curie-von Schweidler law of dielectric 

relaxation; is 
(1 )

2tan  
, that is derived from 

sinusoidal analysis of transfer function of 
fractional capacitor, taking phase angle of 
lagging voltage to a sinusoidal current applied. 
This loss tangent is frequency independent 
quantity; implying loss per cycle is the same 
fraction of stored energy at all frequencies of

m 0v(t) V cos t  , 00     [2,3].  

 
We have observation Eq. (9) of time invariant 

phase lag of q(t) for a sinusoidal input 

excitation.  This may be a new definition of loss 
tangent, which is loss tangent of a dielectric is 

the tangent of phase lag angle   of charge 

function q(t) w.r.t. v(t)  .We are just proposing 

this definition here, and in the future study we will 
try and relate to Electromagnetic Theory of loss 
tangent concept in dielectrics by using

q(t) c(t)*v(t) . But the point we make here, 

that we obtained invariant loss tangent as 
(1 )

2tan  
from Eq. (9) by use of 

q(t) c(t)*v(t) for a fractional capacitor. The 

loss tangent for ideal loss less capacitor 1  is 
zero.   
 
We note that for a time varying capacity function

c(t) C t , (a fractional capacitor) with 

0 < α < 1  the charge function is

p 0q(t) Q cos( t )   . 

 
The peak value of charge 1

p m F 0Q V C 
  varies 

with operating frequency 0 of the excitation 

voltage i.e.
m 0v(t) V cos t  . With parameters

FC   and  assuming to be constant with 

varying 0 , and mV as the maximum rated value 

of the operational circuit; the peak charge pQ  

Eq. (9) decreases as 0 the input excitation 

frequency is increased. While for ideal loss less 

capacitors the peak charge 
m m 1Q V C remains 

invariant with the frequency of input voltage.  
Therefore, with various input excitation voltage-
wave-forms of various frequencies we will be 
getting different peak charge values, though the 
excitation voltage is within the capacitor 

maximum rating mV . This implies that a square 

wave, a triangular wave, a trapezoidal wave of 

voltage-excitation, with mmax
v(t) = V  will be 

giving different peak charge pQ  stored, as they 

will be having different harmonic frequencies. For 
example a square wave voltage of positive and 
negative cycles, a symmetric triangular wave 
voltage, and a pure sinusoidal with the same 

period and with
mmax

v(t) V   will have different 

peak charge pQ stored. However, the 

assumption FC   and   to be constant with 

varying 0 , does not hold, that we will explain in 

Nyquist’s diagram shortly.  
 
We thus obtained all above observations and 
interpretations for sinusoidal excitation by     

using the new formula i.e. q(t) c(t)*v(t) ; 

applied for an ideal as well as fractional 
capacitor. The similar interpretation and 
observations as described here for

m 0v(t) V cos t    in this section is also 

obtained for m 0v(t) V sin t  ; Eq. (10) to Eq. 

(18). 
 

3. IMPEDANCE EXPRESSION OF 
FRACTIONAL CAPACITOR 

 
We have the relation of charge function as

q(t) c(t)*v(t) . By differentiation of this 

expression [1] we get current through capacitor 
as following 
 

t

0

dq(t) dv(t)
i(t) c(t)*

dt dt

dv( )
c(t ) d

d

 

 
    

 


                     (19) 

 
Taking Laplace Transform of the above Eq. (19) 
we obtain . The impedance    I(s) c(t) sV(s) 
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is defined as . From this we 

write, for the capacity function  of capacitor, 

the impedance function  in Laplace domain 

as 
 

                                (20) 

 
We note that Eq. (20) is a new way of expressing 
impedance function that we got from

q(t) c(t)*v(t) . For ideal loss less capacitor 

with 1c(t) C (t)  ; [1] we get the classical 

impedance formula i.e. 
 

                     (21) 

 

With s j  where j 1  we write for 

sinusoidal case the impedance function as 
following 
 

                          (22) 

 
For a capacitor having time varying capacity 

function as c(t) C t , (i.e. a fractional 

capacitor) we get 
 

 (23) 

 
From above Eq. (23) we get

 I(s) C (1 ) s V(s)
   . Using the Laplace 

transforms of fractional derivative i.e. 

 tD f (t) s F(s)   with f(0) = 0  and 

0 < α < 1we get the following 
 

 
(24) 

 

We note that the constant FC  has unit of

1Farad / sec 
 that is unit for fractional 

capacitor. With s j we obtain the following 

 2 2

1
Z(s) ( j )

C (1 )

1
cos jsin

C (1 )






 




 
 

 
  

     (25) 

 

We have
α

α

απ1
2C ω Γ(1-α)

ReZ(ω) = cos  and

α
α

απ1
2C ω Γ(1-α)

-ImZ(ω) = sin . 

 

4. THE NYQUIST’S DIAGRAM OF A 
FRACTIONAL CAPACITOR 

 

The impedance spectroscopy gives Nyquist’s 

diagram, when X Re Z( )  and 

Y Im Z( )   is plotted with frequency 

varying from 0 to -in X-Y plane [31]. For ideal 
loss less capacitor with capacity function as

1c(t) C (t)  , the Nyquist diagram is just Y-Axis 

in units of  , with 
1

1Y ( C )    and X 0  . 

When in limit 0  then Y   and while at 

very-very high frequency i.e. in limit , we 

have Y 0 ; with X 0 at all frequencies. The 

capacitance 1C is constant at all frequencies.  For 

ideal loss less capacitors we have equivalent 

series resistance (ESR) as 0  at all 
frequencies. 
 
For a fractional capacitor with time varying 

capacity function as c(t) C t , we have 

α
α

απ1
2C ω Γ(1-α)

X = cos Ω and α
α

απ1
2C ω Γ(1-α)

Y = sin Ω

We have a slope of the Nyquist’s diagram as

2
tan  . When 1  , the angle of slope is 

tending to 
090 (i.e. the Nyquist’s diagram tends 

towards as vertical line parallel to Y-Axis). While

0.5  , the slope is one, the angle of the slope 

is
045 . We remark here that when 0.5   is 

Warburg Impedance region [12,27]. Then at still 
higher frequencies  , there is a semi-circular 
region-that is related to charge-transfer Faradic 
region (charge-transfer zone) [27], finally that 

ends at Y 0  and X 0   . This fractional 
capacitor phenomenon is observed nicely in the 
super-capacitors. The Fig. 1 gives several 
Nyquist’s diagrams for different super-capacitors 
made indigenously for trial-and being tested via 
impedance spectroscopy [32].  In this paper we 
are not discussing the Electro-Chemical aspects 
and material science aspects via results of 

Z(s) V(s) / I(s)

c(t)

Z(s)

  
1

Z(s)
s c(t)




 1 1

1 1
Z(s)

s C (t) sC
 



1 1

1 j
Z( )

j C C
   

 

   1

F

F

1 1
Z(s)

s C t s C (1 )s

1 1
; C C (1 )

s C (1 ) s C


 



  
 

 
 

    
 



F F

d v(t)
i(t) C ; C C (1 )

dt



  
   
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Impedance Spectroscopy of the super-capacitor, 
rather trying to develop the explanation for 
Nyquist’s diagram using our formula

q(t) c(t)*v(t) .  

 
The Fig. 1 is recent result for our testing of 
indigenous capacitors developed [32] that we are 
making en-mass for characterization-and 
certification of our developed process. This work 
we are doing since long [28], now it is matured 
for industrial usage.  
 

From the Fig.1 we redraw Fig. 2, for only one 
sample C1, for our calculations and explanation. 
The capacitor with time varying capacity function 

as c(t) C t , (fractional capacitor) has ESR 

as
α

α

απ1
s 2C ω Γ(1-α)

R = cos Ω = X . This sR is a function 

of frequency  . At very-very high frequency

 , this ESR is low value 0.2  and at very-

very low frequency    this ESR is at high 
value 0.9  ; see Fig. 2. 
 

The imaginary part is capacitive impedance 
(reactive impedance) in  , i.e.

α
α

απ1
2C ω Γ(1-α)

Y = sin Ω . This is also a frequency 

dependent. The value of Y    for very-very 

low frequency, while the value of Y 0 at              
very-very high frequency; as depicted in Fig. 2.  
 
We show in Fig. 2 the Warburg region, at around 

frequency 0.14Hz , 0.88  Radians / sec , shown 

as point P  . At this point P we have ESR as

sR 0.62  . At this point P of frequency we 

have 0.5  , and Y 0.3  .  
 

Therefore at this point P  we have 
 

0

α 0.5
απ sin451

F-α α 2Yω 0.3×(0.88)

0.5

C = C Γ(1- α) = sin =

= 2.51Farad / sec
 

 

We may point out that F-αC  in unit of 

1-αFarad / sec  can be converted to equivalent 

units of Farad , that we represent by eqC , from 

Nyqist’s diagram. This is by equating Y  value 

which is 
eq

1
ωC

Y =  to α
F-α

απ1
2C ω

Y = sin Ω  we get

 α-1 απ
eq F-α 2C = ω C csc Farad . For the point P 

we have
0.5

F-αC = 2.51Farad / sec  , the

eqC = 3.78Farad , [33].  

 

This Warburg region with 0.5  remains for 
several high frequencies until the Faradic 
(charge-transfer) region of semi-circular bulge is 
observed [27]. Thus at various points of 
frequency    of Nyquist’s diagram, we get the 

value of , ESR ( sR ), and Fractional capacity

FC  in 
1-αFarad / sec  and corresponding eqC in

Farad  . 
 

R e ( )Z 

Im ( )Z 





C 1
C 2 C 3

C 4
C 5

C 9

C 6
C 7

C 8

 
 

Fig. 1. Nyquist’s diagram of Impedance Spectroscopy for nine super-capacitors proto types 
under development 



 
 
 
 

Das; AJR2P, 2(1): 1-17, 2019; Article no.AJR2P.47561 
 
 

 
9 
 

We observe, that at very low frequency 0.006Hz
or 0.04  Radians / sec  the Y value tends 

towards1 . Here we take   as 0.9 .Therefore 

we have
0

0.9

0.1sin81
F-α 1 (0.04)

C 18Farad / sec


  ; with 

eqC 25Farad  . In the limit that is 1.0   and at 

this point we get
F 1.0

C 25Farad 
 , with

sR 0.9  .  

 
This impedance Nyquist’s diagram says that we 
have equivalent circuit representing capacitor 

with time varying capacity function c(t) C t 
  

; as series connected ESR sR with Fractional 

Capacitor FC  ( 1Farad / sec  ), with 

FC C (1 )    as dependent on  . As 

interesting observation, what we got a 

component sR that gives resistive losses for 

super-capacitor, though we assumed in           
our analysis that the ideal voltage source is 
directly connected to our capacitor without any 

resistance. The FC  component with  as we 

discussed gives charge-discharge efficiency [36], 

and the parameters sR and FC  are extracted 

by constant current charge discharge              
excitation (that aspect we are not discussing in 
this paper).  
 
Here we have explained the Nyquist’s diagram of 
fractional capacitor by using the formula

q(t) c(t)*v(t) . 

 
5. CHARGE STORAGE BY STEP INPUT 

VOLTAGE EXCITATION TO A 
FRACTIONAL CAPACITOR AND IDEAL 
CAPACITOR 

 

Let at t 0 mv(t) V a step input of constant 

magnitude mV  is given to an uncharged capacitor 

with time varying capacity function as

c(t) C t . Thus we have following from the 

expression q(t) c(t)*v(t)  

 

        mm
1 2

C (1 ) V C (1 )V
Q(s) q(t) c(t) v(t)

s s s
 

 

     
     

  
                  (26) 

 

R e Z ( )

Im Z ( ) 




0.88Rad / sec

0.5

 

 

0

  

Slope=1

04 5

0.5 

Y

X

P

 
 

Fig. 2. Nyquist’s diagram of super-capacitor C1 
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Doing inverse Laplace transform of above Eq. 
(26), we get the following 
 

1m

1m F
F

V C
q(t) t

1

V C
t , C C (1 )

(2 )




 




   
    

           (27) 

 

The current is  
 

m

dq ( t )
i( t ) V C t

dt
 

                           (28) 

 

This is Curie-von Schweidler relaxation law for 
dielectric stressed with constant voltage or 
Electric field [6-8], [2-10]. If the case we take for 
loss less ideal capacitor given by capacity 

function 1c(t) C (t)  , then q(t) c(t)*v(t) , 

with mv(t) V u(t) , where u(t) is unit step 

function at t 0 , is 
 

 

 

1

1
1 m 1 m

q(t) C(s)V(s)

C V / s C V u(t)







 




 

 

The current in this ideal case is
dq(t ) du(t )

m 1 m 1d di(t) V C V C ( )t t t    . Both the 

cases are depicted in Fig. 3; [1]. 
 

We observe that when the step input v(t)  is kept 

‘ON’ at mV Volts for time T , 2T and 3T  we get 

charge as mV C 1

1q(T) T 

 , 

mV C1 1

1q(2T) 2 T 

 , mV C1 1

1q(3T) 3 T  



respectively. In limit T  , we get
T

q(T)


  . 

This process leads to a new breakdown 
mechanism of capacitors noted in [1,2,3], called 
electrostatic breakdown of capacitors. 

 
Fig. 3 also says that q(t) is instantaneously 

following v(t) without any delay for ideal loss 

less capacitor case. This means that q(t) does 

not have phase lag with v(t) for ideal loss less 

capacitor case. Whereas for a fractional 

capacitor with capacity function c(t) C t the 

charge function  q(t)  is delayed w.r.t. v(t)
implying phase angle lag. This we had discussed 
earlier in Section-2 with sinusoidal analysis. 

 
6. MEMORY EFFECT IN FRACTIONAL 

CAPACITOR 
 
Thus we see if we keep afloat a capacitor not the 
ideal one, but a capacitor with capacity function

c(t) C t , to a constant voltage mV first for 

time T then 2T …the charge held will be more in 
second case, though the terminal voltage that we 

measure will be same as mV . After holding for set 

time, we keep it open circuited for self 
discharging.  Then in all the cases the self 
discharge decay of terminal voltage we will 

observe starting from mV , with a different decay 

curves. This is because in second and third 
cases more charge needs to be drained out, in 

 

v ( t ) v ( t )

c ( t ) c ( t )

q ( t )
q ( t )

i ( t ) i ( t )

t 0 t 0
t t

mV

0

mV

0

1c ( t ) C ( t ) 

1 mC V

1 mi ( t ) C V ( t ) 

c ( t ) C t , t 0 
 

mV C 1
1q ( t ) t , t 0  
  

mv ( t ) V u ( t )mv ( t ) V u ( t )

1 mq ( t ) C V , t 0 

mi ( t ) C V t , t 0 
 

1C

1 mC V

Capacity, charge, current for ideal capacitor  vis-a-vis
time varying capacitor to a step voltage excitation

Ideal capacity Time varying capacity

 
 

Fig. 3. Charge in a ideal capacitor vis-à-vis time varying capacity function  
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the self-discharging case. Thus the capacitor is 
memorizing its time of charge, i.e. T . This is 
described in [2,3], that is due to the formula

α
F-α ti(t) = C D v(t) . This explanation is possible 

only with fractional capacitor and not with ideal 
capacitors, where we write 1

ti(t) = C D v(t) . 

 
The reasons of memory effect is due to porous 
nature of electrodes and due to non-Debye 
complex relaxation with distribution of several 
relaxing rates [10-12]. This non-Debye relaxation 
with several simultaneous relaxation gives 

constituent law as
α

F-α ti(t) = C D v(t)  [10-12], 

where the fractional derivative operator is non-
local in nature mimicking the memorized 

dynamics, compared to
1
ti(t) = C D v(t) , which is 

a local operator and point property having no 
memory. The details about charge storage in 
porous electrodes is explained in [1], by example 
of a pitcher holding water made with porous 
material. 

 
The Fig. 4  is experimental evidence that a 
relaxing system ; in this case, Laponite stressed 
with DC-Electric Field/ Voltage, has a memory of 
being connected to a voltage supply for during 
time    and continues as if it is still connected to 
a non-zero voltage source, after the voltage 
source is switched-off. This Fig. 4 is variation of 

self-discharge voltage dV (t, ) with time after the 

electric field is switched off at time t   for 
different applied voltages. The self-discharging 
curve is a function of DC-Electric field/Voltage 
holding time (  ).  Therefore in a way the relaxing 
system is memorizing its history of charging time 
[4]. 
 

For ideal loss less (initially uncharged) capacitor 

with capacity function 1c(t) C (t)  , for t 0 , 

will hold charge as
m 1q(t) = V C , when put on a 

voltage
mv(t) V u(t) ; Fig. 3.  Therefore after 

any time T , 2T … the charge will be same 

m 1q (T ) q(2 T ) V C  , thereafter the self 

discharge decay curves in this case will not be 
differentiating depending amount of charging 

time T , the capacitor is placed on prior to self 
discharge. As a matter of fact for ideal case, the 

voltage mV will be held for ever (assuming no 

leakage impedance). But while discharging 
through resistor, in ideal capacitor, same amount 

of charge m 1V C  be required to be drained out, 

thus discharge curves will not be differentiating 
the amount of charge holding history.   Thus 
there will be no-memory effect observed in case 
of ideal loss less capacitor, as observed in case 
of fractional capacitors; since amount of charge 
to be drained out in all cases is same.  

 

 
 

Fig. 4. Memorizing charging time of applied electric-field in experiments with Laponite  
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7. CHARGE STORAGE BY RAMP INPUT VOLTAGE EXCITATION TO FRACTIONAL 
CAPACITOR AND IDEAL CAPACITOR 

 

We apply a ramp voltage input to an uncharged capacitor- as  mv(t) V / T t , i.e. applied at t 0

and it linearly rises from zero volts to mV volts, in time t T . We have  2
mV(s) V / Ts . We apply

q(t) c(t)*v(t) ; with c(t) C t , as time varying capacity function. To get the following charge 

function in Laplace domain 
 

m m Fm
1 2 1 (2 ) 1 (2 )

C (1 ) V C (1 ) V CV
Q(s)

s Ts Ts Ts 
  

    

     
    

  
                                               (29) 

 

Doing inverse Laplace transform of Eq. (29) we obtain q(t) as follows 

 

 
2 2m m

2Fm
F

V C (1 ) V C 1
q(t) t t , (m 1) m (m)

T (3 ) T (1 )(2 )

CV
t , 0 t T , C C (1 )

T (3 )

  


 

  
     

      

      
 

                 (30)                    

 

The current i(t)  is following, that we get by 

differentiation of Eq. (30) 
 

1mV Cdq(t)
i(t) t , 0 t T

dt T(1 )
   

                 

(31) 

 

We get the charge at the end of time t T as 
 

1mV C
q(T) T

(1 )(2 )


 
                             

(32) 
 

For ideal capacitor we have capacity function as

1c(t) C (t)  , we write charge as 

q(t) c(t)*v(t) as following 
 

     

      

 

1 m

m m 1
1 2 2

Q(s) c(t) v(t)

C (t) V / T t

V V C
C

Ts Ts



 

 
  

 

 

 
              (33) 

 

Taking inverse Laplace transform of Eq. (33) we 
write the following 
 

m 1V C
q(t) t , t > 0

T
                                    (34) 

                  

We have from Eq. (34); at t T , the stored 

charge as m 1q(T) V C  . This is the same as 

the charge stored at any time t 0 , 
m 1q(t) V C

when 
mv(t) V u(t) for step-input case, Fig. 3. 

Thus an ideal loss-less capacitor charged to 

voltage mV either via ramp input or via step input, 

will hold charge m 1V C . This ideal capacitor when 

kept as open circuited for self discharge mode, 
will start discharging same amount of charge and 
the discharge curves will not have any difference 
in fall rates, as for both cases the discharge 

voltage will be starting from mV . There will no 

memory effect observed for an ideal capacitor 
with ramp as well as step input charging to 

voltage mV .    

 

The current in the ideal capacitor for ramp input

mv(t) V t / T  from Eq. (34) is as follows  
 

m 1V Cdq(t)
i(t)

dt T
                                     (35)     

 

 This we verify from ideal capacitor equation that 
is following 
 

 1 1 m

m 1

dv( t ) d
i(t ) C C V t / T

dt dt

V C

T

 



                     (36) 

 

The charge function obtaining therefore from Eq. 
(36) is as follows 
 

t

0

t
m 1 m 1

0

q ( t ) i( )d

V C V C
d t

T T

  

 
   

 





                   (37)                                     
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The above derivational steps Eq. (33) to Eq. (37) 
for ideal-loss-less capacitor is verification and 

justifies that we apply c(t) C t as we did for 

step input case in previous section when voltage 

is changed at t 0 , (in ramp case too), for a 
fractional capacitor. This comes from the above 
observations Eq. (33) to Eq. (37) that for ideal 
loss less capacitor case, the capacity function i.e.  

1c(t) C (t)  gets applied at t 0 (for ramp 

case too). 
 

8. COMPARISON OF CHARGE STORAGE 
BY STEP AND RAMP INPUT 
EXCITATION & CAPACITOR 
MEMORIZING THE SHAPE OF INPUT 
EXCITATION 

 

For the step input with voltage, held for time 

t T we have the charge as mV C 1

1q(T) T 

 , 

and we have charge at the end of t T  for a 

ramp input as mV C 1

(1 )(2 )q(T) T 

   . We write 

the ratio as follows 
 

m

m

V C 1
STEP 1

V C 1
(1 )(2 )RAMP

q(T) T
2

q(T) T

 



 

          (38) 

 

We observe that if we hold the voltage mV  Volts 

for time T and charge a capacitor, then we will 

be holding (2 ) times the charge if we ramp 

the voltage at rate mV / T from zero to mV Volts, 

in time T . Now after this process if we keep the 
capacitors for self discharging mode, for both the 

cases the voltage decay will start from mV .  For 

step-charging case, since amount of charge held 
is more, it will take longer time to self discharge 
as compared to case with ramp-charging. This 
we expect from the memory effect.  
 
Therefore we can say here the capacitor has 
memorized the shape of its excitation input. This 
we again got from using the formula

q(t) c(t)*v(t) . The comparison between 

step input voltage charging and ramp input 
voltage charging is depicted in Fig. 5. This study 
on similar lines about memory effect from step 
and ramp charging is also shown in [5]; but here 

we have used the new formula q(t) c(t)*v(t)  

 
This ramp and step voltage excitation 
differentiation will not be observed in self-
discharge curves, for an ideal loss less capacitor 

with capacity function as 1c(t) C (t)  , when 

mV
v(t) t ; 0 t T

T
  

mV

Open Circuit

t

0 T
Charging Phase

RAMP
q(t)

1m

RAMP

V C
q(T) T

(1 )(2 )


 

STEP
v(t)

mV

STEP
q(t)

1m

STEP

V C
q(T) T

(1 )




STEP RAMP
q(T) (2 )q(T) 

1mV C
q(t) t , 0 t T

1
  



2
mV C t

q(t) , 0 t T
T(1 )(2 )


  

 

Charging Phase Open Circuit

t

T0

0 T

t

RAMP
v(t)

mv(t) V , 0 t T  

T0
t

 
 

Fig. 5. Step input voltage charging and Ramp input voltage charging 
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charged to voltage  
mV , since in both the cases 

same amount of charge i.e. m 1V C needs be 

drained out (when discharged through a 
resistance). This we have described in previous 
section. Thus an ideal capacitor will not be 

memorizing the shape of its charging profile v(t)
whereas fractional capacitor memorizes the 
charging profile.  
 

9. DISCUSSION 
 

We have compared the step input and ramp 
input excitation, by considering while we       
apply the excitation voltage, the response a 
capacitor produces to charge itself is by same 
time varying capacity function, i.e. 

c(t) C t ;0 1
    , for a fractional 

capacitor. In actual cases the two input functions 

are having frequency components  from 0  to
  (i.e. neglecting truncation of the inputs at time

t T ). As demonstrated while discussing 
Nyquist’s diagrams we will be having different 

values at different frequencies for   and FC  . 

Therefore; we may ask how far this assumption 
is valid. We do the qualitative analysis for this 
assumption.  
  

Unit steps function u(t)  defined as 

u(t) 1; t 0  and u(t) 0; t < 0 (without 

truncation) has Fourier transform as 

   j1
2u(t) ( )      . A unit ramp r(t)

described as r(t) t; t 0   and r(t) 0; t < 0
(without truncation) is having Fourier transform 

as   2

dδ(ω)1
dωr(t) j


   . We observe both

 u(t) and  r(t) have DC component and 

frequency components amplitude varying as
1  

and 
2 respectively-but loaded highly towards 

DC i.e. low frequency.  Therefore even if there is 

difference in   and FC  , that will be small. 

Moreover these Fourier components of unit step 
and unit ramp function will be modified by a 
Fourier transform of ‘Rectangular Window 

function’ centered at time T / 2 , of height unity. 
Thus one may be justified in selecting same 
and C for the capacity function c(t)  acting for 

step as well as ramp input, to compare the 
charge storage function. This analysis is done in 
[5] shows the parameters for ramp and step 
excitations are not widely varying.  

The concept of charge storage as applied here 
by taking convolution operation i.e. 

q(t) c(t)*v(t) instead of usual formula

q(t) c(t)v(t)  is very important in dielectric 

relaxation studies where the capacitor formed as 
classical electronics capacitor is also having 
Curie-von Schweidler current relaxation law 
experimentally verified, as reported in [2], and 
thus fractional capacitor is reality. With use of 
this formula we have inferred various 
phenomena of fractional capacitor and ideal loss 
less capacitor. We have seen applying this 

formula q(t) c(t)*v(t)  we get current of 

fractional capacitor leading by / 2 to the 
voltage input, and charge function q(t)  lags by an 

angle (1 ) / 2    to a voltage input. From 

here we also proposed an idea of re-defining loss 

tangent as tan for a fractional capacitor case, 

where   is lag angle of q(t)  w.r.t. v(t)  in 

sinusoidal analysis. Using this formula we have 
discussed the memory effect that is found for 
fractional capacitors, and showed that not only 
the fractional capacitor memorizes its float 
voltage time T  for step-input voltage, but also 
memorizes the shape of excitation i.e. step 

excitation or ramp excitation  while T remains 
same. The phenomena of fractional capacitor are 
more prominent in super capacitor studies, as 
reported in [5-40], [32], [28]. Therefore in this 
view the concept of charge storage formula is 
revisited, for further usage in dielectric studied 
and super-capacitor studies. Just recently 
experimental validation is carried out on this new 
formula [33], with comparison with other non-
linear numerical simulations for capacitors and 
super-capacitors. 
 

The formula q(t) c(t)*v(t) can be verified for 

several other types of excitation wave forms for 

v(t)  like, square wave, triangular wave, also for 

RC circuit and LC with fractional capacitors. 
That we are not reporting in this paper. 
 

10. CONCLUSION 
 

We have applied the new formula of charge 
storage i.e. via convolution operation, of time 
varying capacity function and voltage stress for a 
fractional capacitor. This new formulation is 
different to the earlier used formula of 
multiplication of capacity and voltage function. 
We have discussed various results obtained for 
different excitation voltages- sinusoidal, step and 
ramp; and also revisited the impedance formula, 
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and Nyquist’s diagrams and the concept of loss-
tangent and memory in fractional capacitors. We 
have given interpretations of the various 
theoretical results that were obtained by this new 
formulation, thus verified the usage of this new 
expression. We have not yet applied this to 
practical cases in our project as this theoretical 
development very new, but plan to have further 
experimental and theoretical studies on this new 
formula, like application in estimation state of 
charge (SOC) in supercapacitors charge 
discharge applications, parameter extraction by 
Hysteresis plot where use this formula for 
supercapacitors, the insight into new way of 
defining loss-tangent as we obtained from this 
formula, and applications to several dielectric 
relaxation experiments where memory is 
observed.   
 
ACKNOWLEDGEMENTS 
 
My sincere acknowledgement is to Prof. Ahmed. 
S. Elwakil, Professor of Electrical Engineering 
University of Sharjah, Emirates; to have 
appreciated this new formulation and to have 
encouraged me on this for further development; 
and along with his team of researchers have 
applied in one study. I acknowledge my project 
colleagues working on indigenous development 
of super-capacitors Dr. N C Pramanik (Scientist 
CMET Thrissur Kerala), Prof Vivek Agarwal 
(Dept. of Electrical Engineering, IIT Bombay), 
Prof Subhojit Ghosh (NIT Raipur), and PhD 
students Mano Ranjan Kumar (NIT Raipur) and 
Geethi Krishnan (IIT-Bombay); to have 
deliberated in detail about this new concept, and 
planning to use this.   

 
COMPETING INTERESTS 
 
Author has declared that no competing interests 
exist. 

 
REFERENCES 
 
1. Shantanu Das. A new look at formulation 

of charge storage in capacitors and 
application to classical capacitor and 
fractional capacitor theory. Asian Journal 
of Research and Reviews in Physics. 
2018;1(3):1-18.  
[Article no.AJR2P.43738] 

2. Svante Westerlund, Lars Ekstam. 
Capacitor Theory. IEEE Trans on 
Dielectrics and Insulation. 1994;1(5):     
826. 

3. Svante Westerlund. dead matter has 
memory. Physica Scripta. 1991;43:174-
179. 

4. Somasri Hazra, Tapati Dutta, Shantanu 
Das, Sujata Tarafdar. Memory of electric 
field in laponite and how it affects crack 
formation: Modeling through generalized 
Calculus. Langmuir; 2017. 
DOI: 10.1021/acs.langmuir.7b02034  

5. Anis Allagui, Di Zhang, Ahmed S. Elwakil. 
Short-term memory in electric double-layer 
capacitors. Applied Physics Letters. 2018; 
113:253901.  

6. Curie Jaques. Recherches sur le pouvoir 
inducteur specifique et la conductibilite des     
corps cristallises. Annales de Chimie et de 
Physique. 1889;17:384–434.  

7. Schweidler Ergon Ritter von.  Studien über 
die Anomalien im Verhalten der Dielektrika 
(Studies on the anomalous behaviour of 
dielectrics)" Annalen der Physik. 1907; 
329(14):711–770. 

8. Jonscher Andrzej Ka. Dielectric Relaxation 
in Solids. Chelsea Dielectrics Press 
Limited; 1983. 

9. Jameson N. Jordan, Azarian Michael H, 
Pecht Michael. Thermal degradation of 
polyimide insulation and its effect on 
electromagnetic coil impedance. 
Proceedings of the Society for Machinery 
Failure Prevention Technology 2017 
Annual Conference; 2017. 

10. Shantanu Das. Revisiting the curie-von 
schweidler law for dielectric relaxation and 
derivation of distribution function for 
relaxation rates as Zipf’s power law and 
manifestation of fractional differential 
equation for capacitor. Journal of Modern 
Physics.  2017;8:1988-2012.  

11. Shantanu Das et al. Micro-structural 
roughness of electrodes manifesting as 
temporal fractional order differential 
equation in super-capacitor transfer 
characteristics. International Journal of 
Mathematics and Computation. 2013; 
20(3):94-113. 

12. Shantanu Das. Functional fractional 
calculus. 2

nd
 Edition Springer-Verlag, 

Germany; 2011. 
13. Shantanu Das. Singular vs. non-singular 

memorized relaxation for basic relaxation 
current of capacitor. Pramana Journal of 
Physics; 2018. 

14. NC Pramanik (CMET), Vivek Agarwal (IIT-
B), Shantanu Das. Project: Design and 
development of power packs with 
supercapacitors & fractional order 



 
 
 
 

Das; AJR2P, 2(1): 1-17, 2019; Article no.AJR2P.47561 
 
 

 
16 

 

modeling. Sanction No. 36(3)14/50B/2014-
BRNS/2620, Dated. 11.05; 2015.  

15. Atangana A, Baleanu D. New fractional 
derivatives with nonlocal and non-singular 
kernel: Theory and application to heat 
transfer model. Thermal Science. 2016; 
20(2):763-769. 
DOI: 10.2298/TSCI160111018A 

16. Caputo M, Fabrizio M. A new definition of 
fractional derivative without singular kernel. 
Progr Fract Differ Appl 2015;1(2):73-85. 
DOI: 10.12785/pfda/010201 

17. Morales-Delgado VF, G´omez-Aguilar JF, 
Taneco-Hern´andez MA, Escobar-
Jim´enez RF. A novel fractional derivative 
with variable- and constant-order applied 
to a mass-spring-damper system. Eur. 
Phys. J. Plus. 2018;133:78. 

18. Trifce Sandev. Generalized langevin 
equation and the prabhakar derivative. 
Mathematics. 2017;5:66. 
DOI: 10.3390/math5040066 

19. Prabhakar TR. A singular integral equation 
with a generalized Mittag-Leffer function in 
the kernel. Yokohama Mathematical 
Journal. 1971;19:7. 

20. Ortigueira MD, Tenreiro Machado J. A 
critical analysis of the Caputo-Fabrizio 
operator. Communications in Nonlinear 
Science and Numerical Simulation. 2018; 
59:608-611. 
DOI: 10.1016/j.cnsns.2017.12.001 

21. Graham William, David C. Watts. Non-
symmetrical dielectric relaxation behaviour 
arising from a simple empirical decay 
function. Transactions on Faraday Society. 
1970;66. 

22. Jordan Hristov. Electrical circuits of non-
integer order: Introduction to an emerging 
interdisciplinary area with examples. 
Springer; 2018. 

23. Ervin Lenzi K, Tateishi Angel A, Haroldo 
Ribeiro V. The role of fractional time-
derivative operators on anomalous 
diffusion. Frontiers in Physics. 2017;5:1–9.  

24. Khaled Saad, Abdon Atangana, Dumitru 

Baleanu. New fractional derivatives with 
non-singular kernel applied to the Burgers 

equation. Chaos. 2018;28(6)· 
DOI: 10.1063/1.5026284 

25. Abdon Atangana. Non validity of index law 
in fractional calculus: A fractional 
differential operator with Markovian and 
non-Markovian properties. Physica A: 
Statistical Mechanics and Its Applications 

505; 2018. 
DOI: 10.1016/j.physa.2018.03.056 

26. Andrea Giusti. A comment on some new 
definitions of fractional derivative.  
arXiv:1710.06852v4 [math.CA]; 2018. 

27. Shantanu Das. Memorized relaxation with 
singular and non-singular memory kernels 
for basic relaxation of dielectric vis-à-vis 
curie-von schweidler & kohlrausch 
relaxation laws. Discrete and Continuous 
Dynamical Systems Series S, American 
Institute of Mathematical Sciences; DCDS-
S (in press). 2019;13(3):13. 

28. Giusti A, Colombaro I. Prabhakar-like 
fractional viscoelasticity. Communications 
in Nonlinear Science and Numerical 
Simulation 2018;56:138-143. 

DOI: 10.1016/j.cnsns.2017.08.002 

29. Oldham KB, Spanier J. The fractional 
calculus. Academic Press; 1974. 

30. Shantanu Das. Kindergarten of fractional 
calculus. (Book-under print at Cambridge 
Scholars Publishers UK- Collection of 
lecture notes on fractional calculus course 
at Dept. of Physics Jadavpur University, 
Phys. Dept. St Xaviers Univ. Kolkata,   
Dept. of Appl. Mathematics Calcutta 
University etc.) 

31. Mohamed E. Fouda, Anis Allagui, Ahmed 
S. Elwakil, Shantanu Das, Costas 
Psychalinos, Ahmed G. Radwan. 
Nonlinear charge-voltage relation in 
constant phase element. Journal of The 
Electrochemical Society – Communica-
tions; (in press); 2019. 

32. Pramanik NC (CMET), Shantanu Das. 
Project: Development of supercapacitor & 
applications in electronic circuits. Sanction 
No. 2009/34/31/BRNS Dated 22.10; 2009. 

33. Shantanu Das, Pramanik NC. Indigenous 
development of carbon aerogel farad 
super-capacitors and application in 
electronics circuits. BARC News Letter 
Issue No. 339; 2014. 

34. Manoranjan Kumar, Subhojit Ghosh, 
Shantanu Das. Frequency dependent 
piecewise fractional order modeling of 
ultra-capacitors using hybrid optimization 
and fuzzy clustering. Journal of Power 
Sources. 2015;335:98-104. 

35. Manoranjan Kumar, Subhojit Ghosh, 
Shantanu Das. Charge discharge energy 
efficiency analysis of ultra-capacitor with 
fractional order dynamics using hybrid 
optimization and its experimental 
validation. International Journal of 
Electronics & Communications (AEU). 
2017;78:2714-280. 



 
 
 
 

Das; AJR2P, 2(1): 1-17, 2019; Article no.AJR2P.47561 
 
 

 
17 

 

36. Elwakil AS, Allagui A, Maundy BJ, 
Psycchalinos CA. A low frequency 
oscillator using super-capacitor. AEU –Int. 
J Electron Commun. 2016;70(7):970-3. 

37. Freebon TJ, Maundy B, Elwakil AS. 
Fractional order models of super-
capacitors, batteries, fuel-cell: A survey. 
Mater Renew Sustain Energy. 2015;4(3):1-
7.  

38. Freebon TJ, Maundy B, Elwakil AS. 
Measurement of super-capacitor fractional 
order model parameters from voltage 
excited step response. IEEE J Emerging 

Sel Top Circuits Syst. 2013;3(3):367-     
76. 

39. Geethi Krishnan, Shantanu Das, Vivek 
Agarwal. A simple adaptive fractional  
order model of supercapacitor for pulse 
power applications. 2018-IACC-0820,  
978-1-5386-4536-9/18/$31.00 © IEEE; 
2018.  

40. Conway BE. Electrochemical super 
capacitors: Scientific fundamentals and 
technological applications. Springer 
Science & Business Media; 2013. 

_________________________________________________________________________________ 
© 2019 Das; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

 
 

 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sdiarticle3.com/review-history/47561 


