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Abstract

The necessary conditions for existence of periodic solutions of an Extended Rosenzweig-
MacArthur model are obtained using Brouwer’s degree. The forward invariant set is formulated
to ensure the boundedness of the solutions, using Brouwers fixed point properties, and Zorns
lemma. Also, sufficient conditions for the existence of a unique positive periodic solution have
been established using Barbalats lemma and Lyapunovs functional. Numerical responses show
that, the phase-flows of the non-autonomous system exhibit an asymptotically stable periodic
solution which is globally attractive and trapped in the absorbing region.
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1 Introduction

Mathematical modelling of ecological system has explored robust modifications in terms of the
nature of their interactions (i.e., competitive, prey-predator systems, spatio-temporal dynamics,
coope- rative systems, patch-diffusion, delay systems and so on), functional responses (i.e., Holling
types, Leslie-Gower, Beddington-DeAngelis, and so on) and ecologically perturbative parameters. In
prey-predator systems, it is pertinent to assume that all biological and environmental perturbative
parameters and state variables are subject to natural fluctuations in time. Thus, the assumption of
periodically varying perturbative parameters is a way of making the dynamical system more realistic
as compared to constant perturbative parameters. Obviously, periodic variations in the environment
and ecologically perturbative parameters are characterized by seasonal effect of weather, food
supplies, predation effects, mating durations, time delay due to gestation, and so on.

The qualitative dynamical behaviors of these mathematical models are widely studied in populations
of multiple interacting species in the ecosystem. [1] investigated the existence and global attractivity
of positive periodic solutions for a Holling II two-prey and one-predator system. Periodic solutions
for a three-species Lotka-Volterra food chain model with time delay were studied in [2]. They
derived the sufficient conditions for the existence of positive periodic solutions of the system. In
the same [3], obtained the necessary and sufficient conditions for existence of periodic solutions of
predator-prey dynamical system with Beddington-DeAngelis-type functional response. Existence of
periodic solutions for a two-species non-autonomous competitive Lotka-Volterra patch system with
time delay was established in [4].

Exploration of these robust dynamical systems requires using topological degree theory, see [5] [6]
[7]. In this theory, to prove the existence of solution for a natural abstract formulated IVP, say

...
X = F (t, Ẍ(t), Ẋ,X(t); t ∈ [0, ω]

F ⊂ C1 : [0, ω]× R3 → R3

X(0) = X(ω), Ẋ(0) = Ẋ(ω), Ẍ(0) = Ẍ(ω), X(t) = X(t+ ω)

(1.1)

usually reduces to solving the abstract operator equation, L(X) = N(X) which has some topological
degree properties, see [8]. Moreover, results of theorems, and propositions well established via
Topological Degree Theory can be numerically simulated using sophisticated dynamical tools (e.g
MAPLE)[9] [10].

2 Model Formulation and Its Invariance Region

The Extended Rosenzwieg-MacArthur Model formulated and studied in [11] is given as:

dx1

dt
= rx1 −

rx2
1

K
− a2

x1

b1 + x1

x2 − a3
x1

b1 + x1

x3

dx2

dt
= c2a2

x2

b1 + x1

x3 − d2x2 − a3
x2

b2 + x2

x3

dx3

dt
= c3a3

x2

b2 + x2

x3 − d3x3 + c3a3
x1

b1 + x1

x3

(2.1)
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where x1(t), x2(t), and x3(t) are the population densities of the interacting species and r,K, a2, a3, b1,

b2, c2, c3, d2 and d3 are positive ecological parameters. In [12] a topologically equivalent dynamical

model of system (2.1) was obtained via non-dimensionalization of the state variables as follows:

dx

dτ
= αu− αu2

κ
− η

u

1 + u
v − u

1 + u
w

dy

dτ
= ε

u

1 + u
v − ξv − σ

v

1 + v
w

dz

dτ
= β

v

1 + v
w − µw + β

u

1 + u
w

(2.2)

where x(τ) =
x1(t)

b1
, y(τ) =

x2(t)

b2
, z(τ) =

x3(t)

b1
, α =

r

a3
, κ =

K

b1
, η =

a2b2
a3b1

, ε =
c2a2
a3

, ξ =
d2
a3
, σ =

b1
b2
, µ =

d3
a3
, τ = a3t, c3 = β. Suppose the ecological parameters are periodic functions, so system

(2.2) can be modified to a non-autonomous system as follows:

du

dτ
= α(τ)− α(τ) expu(τ)

κ(τ)
− η(τ)

exp v(τ)

1 + expu(τ)
− expw(τ)

1 + exp u(τ)
dv

dτ
= ε(τ)

expu(τ)

1 + exp u(τ)
− ξ(τ)− σ(τ)

expw(τ)

1 + exp v(τ)
dw

dτ
= β(τ)

exp v(τ)

1 + exp v(τ)
− µ(τ) + β(τ)

expu(τ)

1 + exp u(τ)

(2.3)

where u(τ) = In | x(τ) |, v(τ) = In | y(τ) |, w(τ) = In | z(τ) |, α(τ) = α(τ + ω), η(τ) =

η(τ + ω), ε(τ) = ε(τ + ω), ξ(τ) = ξ(τ + ω), σ(τ) = σ(τ + ω), β(τ) = β(τ + ω), µ(τ) = µ(τ + ω), and

subject to initial conditions, u(0) = u0 > 0, v(0) = v0 > 0, w(0) = w0 > 0.

Using the fundamental theorem of calculus, it is easy to see that R3
+ is the invariance region of

solutions of system (2.3) satisfying;

u(τ) = uo exp
∫ ω

0
{α(τ)− α(τ) exp u(τ)

κ(τ)
− η(τ)

exp v(τ)

1 + exp u(τ)
− expw(τ)

1 + exp u(τ)
}ds

v(τ) = v0 exp
∫ ω

0
{ε(τ) expu(τ)

1 + exp u(τ)
− ξ(τ)− σ(τ)

expw(τ)

1 + exp v(τ)
}ds

w(τ) = w0 exp
∫ ω

0
{β(τ) exp v(τ)

1 + exp v(τ)
− µ(τ) + β(τ)

expu(τ)

1 + exp u(τ)
}ds

(2.4)

Thus, the state variables are invariants in the positive octant cone, R3
+ = (((uτ), v(τ), w(τ))T ∈

R3 : u(τ) > 0, v(τ) > 0, w(τ) > 0).

3 Some Results on Brouwer’s Topological Degree Theory

3.1 Lemma 1 [13]

Assume f : T ⊂ R → R is ω−periodic function, let τ1, τ1 ∈ [0, ω] then, f̄ = 1
ω

∫ ω

0
| f(τ) | d(τ), f l =

minf(τ), fm = maxf(τ)
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∀τ ∈ [0, ω] and {
f(τ) ≤ f(τ1) +

∫ ω

0
| ḟ(s) | ds

f(τ) ≥ f(τ2)−
∫ ω

0
| ḟ(s) | ds

(3.1)

3.2 Lemma 2 [8]

Let X and Y be two Banach spaces and let L : DomL ⊂ X → Y be a linear operator. Let
N : X → Y be a continuous mapping. A mapping F : DomL ⊂ X → Y is said to be a Fredholm
mapping of index zero, if dimKerL = codimImL <∞ and ImL is closed in Y . If L is a Fredholm
mapping, its index is an integer IndL = dimL − codimImL. Suppose L is a Fredholm mapping
of index zero, there exist continuous projections, P : X → Xand Q : Y → Y such that ImP =
KerL, ImL = KerQ = Im(I−Q), and the restriction LP of L to DomL∩KerP : (I−Q)X → ImL
is invertible. Denote the generalized inverse of LP by KP such that LKP = I, and KPL = I − P .
Let Ω be a non-empty, open bounded subset of X, then the mapping N is said to be L-compact
on Ω̄ if the mapping QN : Ω → Y is continuous, QN(Ω̄) is bounded, and KP (I −Q)N : Ω̄ → X is
compact (i.e., it is continuous, and KP (I −Q)N(Ω̄) relatively compact). Since ImQ is isomorphic
to KerL, then there exists an isomorphism J : ImQ→ KerL.

3.3 Lemma 3 [7]

Let Ω ∈ Rn be an open bounded set and L : Ω̄ → Rn be a continuous mapping. If p /∈ L(∂Ω),
then the Brouwer degree of L at p relative to Ω is an integer number, denoted by: deg(L,Ω, p) =
sign | Jp(p) |, where JP (p) is the Jacobian matrix of the operator L at p, satisfying the following
properties:

i deg(I,Ω, p) = 1, iff p ∈ Ω, where I denotes the identity mapping.

ii if deg(L,Ω, p) ̸= 0 then Lx = p has a solution in Ω

iii if H(t, x) : [0, 1]× Ω̄ → Rn is a continuous homotopic mapping defined as H(t, x) = tϕ(x) +
(1 − t)ψ(x) for ϕ, ψ ∈ C1(Ω), and ∀p ∈ Rn \H(t, ∂Ω), then deg(ϕ,Ω, p) = deg(ψ,Ω, p) and
deg(H(t, x),Ω, p) = deg(H(0, x),Ω, p) independent of t ∈ [0, 1].

3.4 Lemma 4 [5]

Let Ω be an open bounded set. Let L be a Fredholm mapping of index zero, and N be L− compact
on Ω̄. Assume

i for each t ∈ (0, 1) every solution x of Lx = tNx, is such that x /∈ DomL ∩ ∂Ω.
ii QNx ̸= 0, ∀x ∈ DomL ∩ ∂Ω, and
iii deg(JQN : KerL ∩ Ω, 0) ̸= 0 where J : ImQ → KerL is an Isomorphism and deg denotes

the Brouwer topological degree.

Then the operator equation, Lx = Nx has at least one solution in DomL ∩ ∂Ω.

4 Existence of Positive Periodic Solutions

4.1 Proposition 1

Assuming that the perturbation parameters of system (2.3) are periodic functions, then system
(2.3) has at least one positive periodic solution.
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Proof: Suppose X = Y = (u(τ), v(τ), w(τ))T ∈ C1
c (R,R3) : u(τ) = u(τ + ω), v(τ) = v(τ +

ω), w(τ) = w(τ + ω) is the phase flows system (2.3), then equipped the spaces, X and Y with the
usual Euclidean norm, say ∥ u(τ), v(τ), w(τ) ∥= max | u(τ) | +max | v(τ) | +max | w(τ) | ∀τ ∈
[0, ω]. Denote L : DomL ⊂ X → Y and N : X → Y as operator equations,

L(u(τ), v(τ), w(τ))T = (u̇(τ), v̇(τ), ẇ(τ))

N(u(τ), v(τ), w(τ))T =


α(τ)− α(τ) expu(τ)

κ(τ)
− η(τ)

exp v(τ)

1 + expu(τ)
− expw(τ)

1 + expu(τ)

ε(τ)
expu(τ)

1 + expu(τ)
− ξ(τ)− σ(τ)

expw(τ)

1 + exp v(τ)

β(τ)
exp v(τ)

1 + exp v(τ)
− µ(τ) + β(τ)

expu(τ)

1 + expu(τ)

(4.1)

Define two continuous projectors P : X → X and Q : Y → Y as

P (u(τ), v(τ), w(τ))T = Q(u(τ), v(τ), w(τ))T =


1
ω

∫ ω

0
u(τ)dτ

1
ω

∫ ω

0
v(τ)dτ,

1
ω

∫ ω

0
w(τ)dτ

(u(τ), v(τ), w(τ))T ∈ X = Y

It is clear that KerL = (x ∈ X : x = h,h ∈ R3), and ImL = (y ∈ Y :
∫ ω

0
y(τ)dτ = 0) is closed

in Y . Observe that dimKerL = codimImL = 3, ImP = KerL, KerQ = ImLQ = Im(I − Q)
Therefore, L is a Fredholm mapping of index zero.
Furthermore, the generalized inverse KP of LP has the form KP : ImL→ DomL ∩KerP ,

Kpy =
∫ τ

0
y(s)ds− 1

ω

∫ ω

0

∫ τ

0
y(s)dsdτ

Then, QN : X → Y yields

QNx =



1
ω

∫ ω

0
(α(τ)− α(τ) expu(τ)

κ(τ)
− η(τ)

exp v(τ)

1 + expu(τ)
− expw(τ)

1 + expu(τ)
)dτ

1
ω

∫ ω

0
(ε(τ)

expu(τ)

1 + expu(τ)
− ξ(τ)− σ(τ)

expw(τ)

1 + exp v(τ)
)dτ

1
ω

∫ ω

0
(β(τ)

exp v(τ)

1 + exp v(τ)
− µ(τ) + β(τ)

expu(τ)

1 + expu(τ)
)dτ

and Kp(I −Q)N : X → X yields

Kp(I −Q)Nx =

∫ τ

0

Nxds− 1

ω

∫ ω

0

∫ τ

0

Nxdsdτ − 1

ω

∫ τ

0

∫ ω

0

Nxdsds+
1

ω2

∫ ω

0

∫ τ

0

∫ ω

0

Nxdsdsdτ

Clearly, by Lebesgue convergence theorem, QN and KP (I − Q)N are continuous maps. Since
the maps are well-defined on finite dimensional Banach spaces, by Arzela-Ascoli theorem,KP (I −
Q)N(Ω̄) is relatively compact. Additionally, QN(Ω̄) is bounded for any open bounded set Ω ⊂ X,
and N is L− compact.

We now seek a forward invariance set K ⊂ X that is convex and compact such that the phase
flows Φ(τ) ⊂ K satisfy the operator equation Lx = tNx, t ∈ (0, 1). Consider

u̇(τ) = α(τ)− α(τ) expu(τ)

κ(τ)
− η(τ)

exp v(τ)

1 + expu(τ)
− expw(τ)

1 + expu(τ)

v̇(τ) = ε(τ)
expu(τ)

1 + expu(τ)
− ξ(τ)− σ(τ)

expw(τ)

1 + exp v(τ)

ẇ(τ) = β(τ)
exp v(τ)

1 + exp v(τ)
− µ(τ) + β(τ)

expu(τ)

1 + expu(τ)

(4.2)
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integrating yields
ωᾱ =

∫ ω

0
(α(τ)− α(τ) expu(τ)

κ(τ)
− η(τ)

exp v(τ)

1 + expu(τ)
− expw(τ)

1 + expu(τ)
)dτ

ωξ̄ =
∫ τ

0
(ε(τ)

expu(τ)

1 + expu(τ)
− ξ(τ)− σ(τ)

expw(τ)

1 + exp v(τ)
)dτ

ωµ̄ =
∫ ω

0
(β(τ)

exp v(τ)

1 + exp v(τ)
− µ(τ) + β(τ)

expu(τ)

1 + expu(τ)
)dτ

(4.3)

and 
∫ ω

0
| u̇(τ) | dτ ≤

∫ ω

0
(α(τ)+ | α(τ) |)dτ = ω(α+ | α |)∫ ω

0
| v̇(τ) | dτ ≤

∫ ω

0
ξ(τ)+ | ξ(τ) | dτ) = ω(ξ+ | ξ |)∫ ω

0
| ẇ(τ) | dµ ≤

∫ ω

0
µ(τ)+ | µ(τ) | dτ) = ω(µ+ | µ |)

(4.4)

Using Mean-Value Theorem for integral equations, we have that there exists δi ∈ [0, ω] for i = 1, 2, 3
such that u(δ1) ≤ R1, v(δ1) ≤ R2, w(δ1) ≤ R3 where R1, R2, R3 are sufficiently large. Using lemma
1, system (4.4) and proposition (1.6) from [14], the forward invariance region of system (2.3) is as
follows: 

| u(τ) |≤| u(δ1) | +
∫ ω

0
| u̇(τ) | dτ < R1 + ω(α+ | α |) =M1

| v(τ) |≤| v(δ1) | +
∫ ω

0
| v̇(τ) | dτ < R2 + ω(ξ+ | ξ |) =M2

| w(τ) |≤| w(δ1) | +
∫ ω

0
| ẇ(τ) | dτ < R3 + ω(µ+ | µ |) =M3

Observe that the setK = [0,M1]×[0,M2]×[0,M3] is forward invariance, compact and convex. Using
Brouwer fixed point theorem, see [15], the phase flows Φ(τ) of system (2.3) have at least a fixed point
say, (u∗, v∗, w∗) ∈ X such that Φ(τ) → (u∗, v∗, w∗) as τ → ∞. By Zorns lemma, and semi-group
properties of phase flows Φ(τ) of system (2.3), see [16], there exists a maximal element M satisfying
∥(u∗, v∗, w∗)T ∥ =| u∗ | + | v∗ | + | w∗ |< M, where M = M1 +M2 +M3 + 1 which is independent
of the perturbation parameter t ∈ (0, 1). Taking Ω = (u(τ), v(τ), w(τ))T ∈ X : ∥u, v, w∥ < M;
then it is easy to claim that Ω is an open bounded set in X, which verifies lemma 4 (i). When
u(τ), v(τ), w(τ))T ∈ ∂Ω ∩ KerL = ∂Ω ∩ R3; (u(τ), v(τ), w(τ))T is a constant vector in R3 with
| u | + | v | + | w |= M and the operator equation QNx ̸= 0 which verifies lemma 4(ii). We now
verify lemma 4(iii) using lemma (3) as follows. Define a homotopic mapping, say H(u, v, w;λ) :
DomL× [0, 1] → X by H(u, v, w;λ) = λϕ(u, v, w) + (1− λ)ψ(u, v, w) for λ ∈ [0, 1], where

ψ(u, v, w)T =


ᾱ− 1

κ
expu(τ)

ε̄
expu(τ)

1 + expu(τ)
− σ̄

expw(τ)

1 + exp v(τ)
β̄ exp v(τ)

1 + exp v(τ)
− µ̄

(4.5)

Moreover, it can be easily shown that the approximated algebraic system (4.5) has a unique fixed
point (u∗, v∗, w∗) ∈ X ⊂ R3 if β̄ > µ̄. Using homotopy invariance properties of Brouwer’s degree,
and taking J = I : ImQ→ KerL then,

deg(JQN(Φ);KerL ∩ Ω, (0, 0, 0)T ) = deg(IQN(Φ);KerL ∩ Ω, (0, 0, 0)T = deg(ϕ(u, v, w)T ;KerL ∩
Ω, (0, 0, 0)T

= sign

∣∣∣∣∣∣∣∣∣∣∣
− 1

κ
expu(τ) 0 0

ε̄
exp(u(τ)

(1 + expu(τ))2
σ̄

(expw(τ)

(1 + exp v(τ))2
−σ̄ expw(τ)

1 + exp v(τ)

0
β̄ exp v(τ)

(1 + exp v(τ))2
0

∣∣∣∣∣∣∣∣∣∣∣
= -1 ̸= 0

6
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Therefore, conditions of lemma (4) are satisfied, and system (2.3) has at least one ω − periodic
solution in DomL ∩ Ω̄.

4.2 Corollary 1

The set K = (u(τ), v(τ), w(τ)) : 0 ≤ u(τ) ≤ M1, 0 ≤ v(τ) ≤ M2, 0 ≤ w(τ) ≤ M3 is the absorbing
region of phase flows of dynamical system (2.3) in Ω.

5 Uniqueness and Global Attractivity of Periodic
Solution

5.1 Proposition 2

Assume the perturbation parameters of dynamical system (2.3) are positive periodic functions,
then the dynamical system(2.3) has a unique positive periodic solution, and globally attractive in
absorbing region K.

Proof: Let Φ(τ) = u(τ), v(τ), w(τ))T be a positive periodic solution of of system (2.3) and let
Ψ(τ) = (u∗(τ), y∗(τ), z∗(τ))T be any solution of system (2.3) in K. We construct a positive definite
Lyapunov’s functional F ∈ C[R3 × R+,R+] defined as;

F (τ) =| Inx(τ)− Inx∗(τ) | + | Iny(τ)− Iny∗(τ) | + | Inz(τ)− Inz∗(τ)|.

Using notations in [17] for upper right-derivative of the Lyapunov’s functional and differentiating
along the direction of trajectories of system (2.3) yields,

D+F (τ) =

{
ẋ(τ)

x(τ)
− ẋ∗(τ)

x∗(τ)

}
sign | x(τ)− ẋ(τ) | +

{
ẏ(τ)

y(τ)
− ẏ∗(τ)

y∗(τ)

}
sign | y(τ)− ẏ(τ) | +{

ż(τ)

z(τ)
− ż∗(τ)

z∗(τ)

}
sign | z(τ)− ż(τ) |

≤ η1 | x(τ)− x∗(τ) | +η2 | y(τ)− y∗(τ) | +η3 | z(τ)− z∗(τ) |

where

η1 =
ηmM2 + βM

(1 +M l
1)

2
− αl

κM
> 0,

βm + σmM3

(1 +M l
2)

2
− ηl + ηlM l

1

(1 +M1)2
> 0,

η3 =
σm

(1 +M1)2
− (1 +M2)

2 + σlM l
2(1 +M1)

(1 +M1)(1 +M2)2
> 0

Choose δ = min(η1, η2, η3) > 0 and integrating both sides yields,

F (τ) ≤ δ

∫ τ

0

(| x(τ)− x∗(τ) | + | y(τ)− y∗(τ) | + | z(τ)− z∗(τ) |)dτ + F (0) < +∞ (5.1)

The inequality (5.1) guarantees boundedness of the Lyapunov’s functional on [0,+∞), and (| x(τ)−
x∗(τ) | + | y(τ) − y∗(τ) | + | z(τ) − z∗(τ) |) ∈ L1(0,+∞). Now, applying Barbalat’s lemma [18],
then (| x(τ)− x∗(τ) | + | y(τ)− y∗(τ) | + | z(τ)− z∗(τ) |) is uniformly continuous on [0,+∞) and

| x(τ)− x∗(τ) |→ 0, | y(τ)− y∗(τ) |→ 0, | z(τ)− z∗(τ) |→ 0 as τ → +∞.

Therefore, system (2.3) assumed a unique globally attractive positive periodic solution, and trapped
in the absorbing region K .
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6 Application and Numerical Simulations

Consider the π−periodic coefficients of system (2.3) say, α(τ) = 4.7688 + sin2τ, κ(τ) = 2.0064 +
sin2τ, ε(τ) = 1.1249 + sin2τ, β(τ) = 0.543 + 0.2431sin2τ, ξ = 0.041, µ = 0.3804, σ = 1.0755, µ =
0.1673, αl = 3.7688, αm = 5.7688, βl = 0.2999, βm = 0.7861, κl = 1.0044, κm = 3.0064, εl =
0.1249, εm = 2.1249,M l

1 = 0.5231,M l
2 = 0.3730,M l

3 = 0.5231,M1 = 16.9816,M2 = 17.6788,M3 =
3.1951, η1 = 0.3602, η2 = 2.2390, η3 = 0.5137, δ = 0.3602, subject to initial conditions, x(0) =
1.0678, y(0) = 1.3730, z(0) = 0.6383. It is easy to examine that the periodic coefficients satisfy
boundedness conditions of proposition 1 and 2.

Fig. 1. Globally asymptotically stable periodic solution of prey species of system
(2.3) at initial condition x(0) = 1.0678, y(0) = 1.3730, z(0) = 0.6383

Fig. 2. Globally asymptotically stable periodic solution predator species of system
(2.3) at initial condition x(0) = 1.0678, y(0) = 1.3730, z(0) = 0.6383

Fig. 3. Globally asymptotically stable periodic solutionsuper-predator species of
system (2.3) at initial condition x(0) = 1.0678, y(0) = 1.3730, z(0) = 0.6383
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7 Conclusion

This paper has established the necessary conditions for the existence of at least one positive
periodic solution of an Extended Rosenzweig-MacArthur tri-trophic food chain model via Brouwers
topological degree theory. Also, it has established the sufficient conditions for existence of a
unique positive periodic solution of the model using Barbalats lemma and Lyapunovs functional.
Consequently, the periodic solution is globally attractive in its invariance region. Thus, this model
predicts and depicts a real-life ecological population dynamics as the perturbation parameters
assumed periodic oscillations. Its connotes the natural ecological fluctuations.
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