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Abstract

It is well known that the coverage probability of a given nominal level confidence interval and
the credible probability of a given nominal level credible interval will attain the nominal level.
Moreover, it is commonly believed that the two switching concepts probabilities, that is, the
coverage probability of a given nominal level credible interval and the credible probability of
a given nominal level confidence interval, can not attain the nominal level in general. For the
hierarchical normal model, we show that the two switching concepts probabilities can attain the
nominal level in the limit when a skillful classified variable is infinity. The numerical simulations
illustrate the correctness of our findings.
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1 Introduction

Statistical inferences are covered in many classical textbooks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The main
estimates of statistical inferences are point estimates and interval estimates. The usual interval
estimates are confidence intervals and credible intervals. The confidence intervals are usually
measured under the coverage probability, while the credible intervals are usually measured under
the credible probability. There is no article research on the credible probability of the confidence
interval. However, there are a lot of research on the coverage probability of the credible interval.
[11] find that allowing for genotyping error yielded relative risk estimates that were approximately
unbiased, together with 95% credible intervals giving approximately correct coverage probability.
[12] find that the Bayesian credible intervals based on the same priors also have super frequentist
coverage probabilities while some of the frequentist confidence intervals procedures have drastically
poor coverage. [13] find that the impact of different choices of prior distributions on the coverage
probability of credible intervals is unknown. [14] compare three Bayesian sample size criteria: the
Average Coverage Criterion (ACC) which controls the coverage rate of fixed length credible intervals
over the predictive distribution of the data, the Average Length Criterion (ALC) which controls the
length of credible intervals with a fixed coverage rate, and the Worst Outcome Criterion (WOC)
which ensures the desired coverage rate and interval length over all (or a subset of) possible datasets.
[15] find that Bayesian interval estimates for the treatment effect are longer on average, though there
is little improvement in coverage probability. [16] find that the 95% confidence/credible intervals
also possess good coverage properties, given that the point estimates perform good. [17] find that
the coverage probability of the credible interval close to the nominal value, with a small coverage
asymmetry in some cases. [18] find that 95% credible intervals may not retain nominal coverage,
and treatment rank probabilities may become distorted. [19] find that Bayesian inference provides
reliable credible intervals in terms of bias and coverage probability. [20] carry out simulations and
find that spatial capture-recapture models produced more accurate parameter estimates with better
credible interval coverage than non-spatial capture-recapture models. [21] find that the coverage
probability of given credible interval is well-calibrated in the simulation experiments.

It is well known that the coverage probability of a given nominal level 1 − α confidence interval
and the credible probability of a given nominal level 1− α credible interval will attain the nominal
level 1−α. In Example 9.2.18, [4] tell us that for the hierarchical normal model, the two switching
concepts probabilities, that is, the coverage probability of the 1−α credible interval and the credible
probability of the 1−α confidence interval, can not attain the nominal level 1−α in general. Whether
it is possible, under some circumstances, that the two switching concepts probabilities attain the
nominal level 1− α is not mentioned in the example and the relevant exercises in [4]. Nobody has
considered this problem to the best of our knowledge. By inspecting the calculations in Example
9.2.18, we find that they use a specific configuration for τ (n) = σ/

√
n which is a known function

of n. Inspired by this specific configuration, we show that the two switching concepts probabilities
can attain the nominal level 1 − α in the limit by taking suitable configurations for τ (n). The
numerical simulations illustrate the correctness of our findings.

The rest of the paper is organized as follows. In the next Section 2, we prove two theorems for the
hierarchical normal model. Theorem 2.1 concerns the limiting behavior of the coverage probability
of the 1−α credible interval. Theorem 2.2 concerns the limiting behavior of the credible probability
of the 1−α confidence interval. In Section 3, the numerical simulations are carried out to illustrate
the correctness of the two theorems. Section 4 concludes.
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2 Main Results

The hierarchical normal model of Example 9.2.18 in [4] is as follows. LetX1, . . . , Xn be iidN
(
θ, σ2

)
,

and let θ have the prior pdf N
(
µ, τ2

)
, where µ, σ, and τ are all known. For simplicity, we assume

−∞ < µ < ∞ and σ > 0 are known constants. Furthermore, we assume that τ (n) is a known
function of n, which is inspired by Example 9.2.18 in [4]. There, they use τ (n) = σ/

√
n which is a

known function of n. In fact, from theorems 1 and 2 below, we find that τ (n) as a function of n is
critical to define the skillful classified variable L = lim

n→∞

√
nτ2 (n).

For the coverage probability of the 1− α credible interval of the hierarchical normal model Pn (θ),

from Example 9.2.18 and by noting that γ = σ2

nτ2(n)
, we have

Pn (θ) = Pθ

(∣∣∣∣Z − γ (θ − µ)

σ/
√
n

∣∣∣∣ ≤ zα
2

√
1 + γ

)
= Pθ

(∣∣∣∣Z − σ (θ − µ)√
nτ2 (n)

∣∣∣∣ ≤ zα
2

√
1 +

σ2

nτ2 (n)

)
,

where Z ∼ N (0, 1) and zα
2
is the α

2
upper quantile of Z. Let

A (n) =
σ (θ − µ)√
nτ2 (n)

and B (n) =

√
1 +

σ2

nτ2 (n)
.

Then

Pn (θ) = Pθ

(
|Z −A (n)| ≤ zα

2
B (n)

)
= Pθ

(
A (n)− zα

2
B (n) ≤ Z ≤ A (n) + zα

2
B (n)

)
. (2.1)

We have the following theorem which concerns the limiting behavior of the coverage probability of
the 1 − α credible interval. Note that the choice of L = lim

n→∞

√
nτ2 (n) as the classified variable is

skillful.

Theorem 2.1. Let L = lim
n→∞

√
nτ2 (n) and assume θ ̸= µ. Then

lim
n→∞

Pn (θ) =


1− α, if L = ∞,
0, if L = 0,

Pθ

(∣∣∣Z − σ(θ−µ)
L

∣∣∣ ≤ zα
2

)
, if L ∈ (0,∞) .

Proof. If L = ∞, then

A (n) =
σ (θ − µ)√
nτ2 (n)

→ σ (θ − µ)

L
= 0, as n → ∞,

B (n) =

√
1 +

σ2

nτ2 (n)
→
√

1 +
σ2

∞ = 1, as n → ∞.

Therefore,

lim
n→∞

Pn (θ) = Pθ

(
|Z| ≤ zα

2

)
= 1− α.

If L = 0, that is,
√
nτ2 (n) → 0, as n → ∞. Then

τ (n) , τ2 (n) , n
1
4 τ (n) → 0, as n → ∞. (2.2)
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When θ > µ, we have A (n) → ∞, as n → ∞. We want to show that the lower bound in (2.1)

A (n)− zα
2
B (n) → ∞, as n → ∞.

But B (n) may also tend to ∞, as n → ∞. We have

A (n)− zα
2
B (n) =

σ (θ − µ)√
nτ2 (n)

−

√
1 +

σ2

nτ2 (n)
zα

2

=
σ (θ − µ)√
nτ2 (n)

−
√

nτ2 (n) + σ2

√
nτ (n)

zα
2

=
1√

nτ2 (n)

[
σ (θ − µ)− τ (n)

√
nτ2 (n) + σ2zα

2

]
.

By (2.2), the limit

lim
n→∞

[
τ (n)

√
nτ2 (n) + σ2zα

2

]
= lim

n→∞

[
n

1
4 τ (n)

√
nτ2 (n) + σ2

n
1
4

zα
2

]

= lim
n→∞

[
n

1
4 τ (n)

√
√
nτ2 (n) +

σ2

√
n
zα

2

]
= lim

n→∞

[
n

1
4 τ (n)

]√
lim

n→∞

[√
nτ2 (n)

]
+ lim

n→∞

σ2

√
n
zα

2

= 0 ·
√
0 + 0zα

2
= 0.

Since 1√
nτ2(n)

→ ∞, as n → ∞, and σ (θ − µ) > 0, we therefore have

lim
n→∞

[
A (n)− zα

2
B (n)

]
= ∞.

Consequently, lim
n→∞

Pn (θ) = 0. When θ < µ, we have A (n) → −∞, as n → ∞. Similarly, we can

prove that the upper bound in (2.1)

A (n) + zα
2
B (n) → −∞, as n → ∞.

Consequently, lim
n→∞

Pn (θ) = 0.

If L ∈ (0,∞), then

A (n) =
σ (θ − µ)√
nτ2 (n)

→ σ (θ − µ)

L
, as n → ∞,

B (n) =

√
1 +

σ2

nτ2 (n)
→
√

1 +
σ2

∞ = 1, as n → ∞.

Therefore,

lim
n→∞

Pn (θ) = Pθ

(∣∣∣∣Z − σ (θ − µ)

L

∣∣∣∣ ≤ zα
2

)
∈ (0, 1− α) .

The proof of the theorem is complete. �

In Theorem 2.1, if L does not exist, then this case is complicated, and we do not pursue it. We
have the following remarks for Theorem 2.1.

Remark 2.1. We can take specific configurations of the parameter τ2 (n), so that lim
n→∞

Pn (θ) can take

different values in Theorem 2.1. For example, the following configurations of τ2 (n) will guarantee
L = lim

n→∞

√
nτ2 (n) = ∞, and thus lim

n→∞
Pn (θ) = 1− α:
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• τ2 (n) → c ∈ (0,∞), as n → ∞. In particular, τ2 (n) = τ2
0 → τ2

0 ∈ (0,∞), as n → ∞.

• τ2 (n) → ∞, as n → ∞.

• lim
n→∞

τ2 (n) does not exist, and there exist an ε > 0 and an N > 0, such that for any n ≥ N ,∣∣τ2 (n)
∣∣ ≥ ε > 0,

that is, τ2 (n) is bounded away from 0. In particular,

τ2 (n) =

{
1, n is odd,
2, n is even.

• τ2 (n) → 0, as n → ∞, but
√
nτ2 (n) → L = ∞, as n → ∞. For instance, τ2 (n) = n− 1

4 .

The configuration τ (n) = σ/
√
n in [4] has

√
nτ2 (n) =

√
n
σ2

n
=

σ2

√
n

→ 0 = L, as n → ∞.

Thus, by Theorem 2.1, lim
n→∞

Pn (θ) = 0.

If τ2 (n) = c√
n
, where c ∈ (0,∞), then

√
nτ2 (n) =

√
n

c√
n

= c → c = L ∈ (0,∞) , as n → ∞.

Thus, by Theorem 2.1,

lim
n→∞

Pn (θ) = Pθ

(∣∣∣∣Z − σ (θ − µ)

c

∣∣∣∣ ≤ zα
2

)
.

Remark 2.2. When θ = µ, it is easy to check that A (n) = 0. Therefore,

Pn (θ) = Pθ

(
|Z| ≤ zα

2

√
1 +

σ2

nτ2

)
= 2Φ

(
zα

2

√
1 +

σ2

nτ2

)
− 1,

where Φ (x) is the cdf of Z ∼ N (0, 1). Note that Pn (θ) does not depend on θ. Since σ2

nτ2 ∈ [0,∞],
we have Pn (θ) ∈ [1− α, 1].

For the credible probability of the 1− α confidence interval of the hierarchical normal model, from
Example 9.2.18, we have

Pn (x̄) = Px̄

(∣∣∣∣Z − γ (x̄− µ)√
1 + γσ/

√
n

∣∣∣∣ ≤ zα
2

√
1 + γ

)
.

Let

C (n) =
γ (x̄− µ)√
1 + γσ/

√
n

and B (n) =
√

1 + γ.

Then

Pn (x̄) = Px̄

(
|Z − C (n)| ≤ zα

2
B (n)

)
= Px̄

(
C (n)− zα

2
B (n) ≤ Z ≤ C (n) + zα

2
B (n)

)
. (2.3)

Note that γ = σ2/
(
nτ2

)
, and thus

B (n) =

√
1 +

σ2

nτ2 (n)

5



Zhang and Rong; BJMCS, 20(4), 1-11, 2017; Article no.BJMCS.31816

and

C (n) =
γ (x̄− µ)√
1 + γσ/

√
n

=
σ2

nτ2 (x̄− µ)√
1 + σ2

nτ2
σ√
n

=
σ2

nτ2 (x̄− µ)
√

nτ2+σ2
√

nτ
σ√
n

=
σ2

nτ2
(x̄− µ)

nτ√
nτ2 + σ2σ

=
σ (x̄− µ)

τ
√
nτ2 + σ2

=
σ (x̄− µ)√
nτ4 + σ2τ2

=
σ (x̄− µ)√

(
√
nτ2)

2
+ σ2τ2

.

Analogous to Theorem 2.1, we have the following theorem which concerns the limiting behavior of
the credible probability of the 1− α confidence interval.

Theorem 2.2. Let L = lim
n→∞

√
nτ2 (n) and assume x̄ ̸= µ. Then

lim
n→∞

Pn (x̄) =


1− α, if L = ∞,
0, if L = 0,

Px̄

(∣∣∣Z − σ(x̄−µ)
L

∣∣∣ ≤ zα
2

)
, if L ∈ (0,∞) .

Proof. The proof of Theorem 2.2 follows from that of Theorem 2.1. If L = ∞, then

|C (n)| = |σ (x̄− µ)|√
(
√
nτ2)

2
+ σ2τ2

≤ |σ (x̄− µ)|√
(
√
nτ2)

2
→ |σ (x̄− µ)|

L
= 0, as n → ∞,

B (n) =

√
1 +

σ2

nτ2 (n)
→
√

1 +
σ2

∞ = 1, as n → ∞.

Therefore,

lim
n→∞

Pn (x̄) = Px̄

(
|Z| ≤ zα

2

)
= 1− α.

If L = 0, that is,
√
nτ2 (n) → 0, as n → ∞, then (2.2) is right. When x̄ > µ, we have

C (n) → ∞, as n → ∞. We want to show that the lower bound in (2.3)

C (n)− zα
2
B (n) → ∞, as n → ∞.

But B (n) may also tend to ∞, as n → ∞. We have

C (n)− zα
2
B (n) =

σ (x̄− µ)√
(
√
nτ2)

2
+ σ2τ2

− zα
2

√
1 +

σ2

nτ2

=
1√

(
√
nτ2)

2
+ σ2τ2

[
σ (x̄− µ)− zα

2

√
1 +

σ2

nτ2

√(√
nτ2

)2
+ σ2τ2

]
.

And the limit

lim
n→∞

[√
1 +

σ2

nτ2

√(√
nτ2

)2
+ σ2τ2

]
= lim

n→∞

[
√
nτ2

√
1 +

σ2

nτ2

√
1 +

σ2

nτ2

]

= lim
n→∞

[√
nτ2

(
1 +

σ2

nτ2

)]
= lim

n→∞

[√
nτ2 +

σ2

√
n

]
= 0 + 0 = 0.

Since σ (x̄− µ) > 0 and

1√
(
√
nτ2)

2
+ σ2τ2

→ 1√
0 + 0

= ∞, as n → ∞,
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we therefore have

lim
n→∞

[
C (n)− zα

2
B (n)

]
= ∞.

Consequently, lim
n→∞

Pn (x̄) = 0. When x̄ < µ, we have C (n) → −∞, as n → ∞. Similarly, we can

prove that the upper bound in (2.3)

C (n) + zα
2
B (n) → −∞, as n → ∞.

Consequently, lim
n→∞

Pn (x̄) = 0.

If L ∈ (0,∞), then

C (n) =
σ (x̄− µ)√

(
√
nτ2)

2
+ σ2τ2

→ σ (x̄− µ)√
L2 + 0

=
σ (x̄− µ)

L
, as n → ∞,

B (n) =

√
1 +

σ2

nτ2 (n)
→
√

1 +
σ2

∞ = 1, as n → ∞.

Therefore,

lim
n→∞

Pn (x̄) = Px̄

(∣∣∣∣Z − σ (x̄− µ)

L

∣∣∣∣ ≤ zα
2

)
∈ (0, 1− α) .

The proof of the theorem is complete. �

In Theorem 2.2, if L does not exist, then this case is complicated, and we do not pursue it. Note
that Remark 2.1 is also suitable for Theorem 2.2. Moreover, we have the following remark for
Theorem 2.2.

Remark 2.3. When x̄ = µ, it is easy to check that C (n) = 0. Therefore,

Pn (x̄) = Px̄

(
|Z| ≤ zα

2

√
1 +

σ2

nτ2

)
= 2Φ

(
zα

2

√
1 +

σ2

nτ2

)
− 1.

Note that Pn (x̄) does not depend on x̄. Since σ2

nτ2 ∈ [0,∞], we have Pn (x̄) ∈ [1− α, 1].

3 Numerical Simulations

In this section, we will numerically illustrate the correctness of Theorems 2.1 and 2.2.

We first illustrate Theorem 2.1. Since we are considering the limiting behavior of the coverage
probability of the 1 − α credible interval Pn (θ), θ is fixed and unknown. In our simulations, we
assume that θ = 2. The other parameters are

µ = 1, σ = 3, α = 0.1,

where µ is the prior mean, σ is the standard deviation of the normal model, and α is the significance
level (1−α = 0.9 is the nominal level). We will use the configurations of the parameter τ (n) specified

7
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in Remark 2.1:

τ11 (n) = τ0 = 1 → 1 ∈ (0,∞) , as n → ∞,

τ12 (n) = n → ∞, as n → ∞,

τ13 (n) =

{
1, n is odd,√
2, n is even,

τ14 (n) = n− 1
8 → 0, as n → ∞,

τ2 (n) =
σ√
n
,

τ3 (n) =

√
c

n
1
4

=

√
2

n
1
4

.

It is easy to check that for the above configurations,

L = lim
n→∞

√
nτ2 (n) =


∞, for τ (n) = τ11 (n) , τ12 (n) , τ13 (n) , τ14 (n) ,
0, for τ (n) = τ2 (n) ,
c ∈ (0,∞) , for τ (n) = τ3 (n) .

The limiting behaviors of the coverage probabilities of the 1−α credible intervals Pn (θ) for the six
configurations of τ (n) are reported in Fig. 1. From Fig. 1, we clearly see that for the first four
configurations of τ (n), Pn (θ) → 1−α = 0.9, as n → ∞. For τ (n) = τ2 (n), Pn (θ) → 0, as n → ∞.
For τ (n) = τ3 (n),

Pn (θ) → Pθ

(∣∣∣∣Z − σ (θ − µ)

c

∣∣∣∣ ≤ zα
2

)
= 0.557 ∈ (0, 0.9) = (0, 1− α) , as n → ∞.

The results of Fig. 1 illustrate the correctness of Theorem 2.1.

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

P
n(θ

)

τ(n) = τ11(n)
τ(n) = τ12(n)
τ(n) = τ13(n)
τ(n) = τ14(n)
τ(n) = τ2(n)
τ(n) = τ3(n)

Coverage Probability of 1 − α = 0.9 Credible Interval

Fig. 1. The limiting behaviors of the coverage probabilities of the 1− α credible
intervals
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Now we illustrate Theorem 2.2. Since we are considering the limiting behavior of the credible
probability of the 1 − α confidence interval Pn (x̄), x̄ is fixed. In our simulations, we assume that
x̄ = 4. The other parameters are

µ = 1, σ = 3, α = 0.1,

the same as those in the previous simulation. We will use the six configurations of the parameter
τ (n) specified in the previous simulation, while c is changed to 5. For the six configurations,
L = lim

n→∞

√
nτ2 (n) is the same as those in the previous simulation. The limiting behaviors of the

credible probabilities of the 1 − α confidence intervals Pn (x̄) for the six configurations of τ (n)
are reported in Fig. 2. From Fig. 2, we clearly see that for the first four configurations of τ (n),
Pn (x̄) → 1 − α = 0.9, as n → ∞. We see that for τ (n) = τ14 (n), Pn (x̄) increases very slowly.
Therefore, we let n increase from 10 to 10000 (note that in Fig. 1, this number is 1000). For
τ (n) = τ2 (n), Pn (x̄) → 0, as n → ∞. For τ (n) = τ3 (n),

Pn (x̄) → Px̄

(∣∣∣∣Z − σ (x̄− µ)

c

∣∣∣∣ ≤ zα
2

)
= 0.438 ∈ (0, 0.9) = (0, 1− α) , as n → ∞.

The results of Fig. 2 illustrate the correctness of Theorem 2.2.

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

P
n(x

)

τ(n) = τ11(n)
τ(n) = τ12(n)
τ(n) = τ13(n)
τ(n) = τ14(n)
τ(n) = τ2(n)
τ(n) = τ3(n)

Credible Probability of 1 − α = 0.9 Confidence Interval

Fig. 2. The limiting behaviors of the credible probabilities of the 1− α confidence
intervals

4 Conclusion

We prove two theorems for the hierarchical normal model. Theorem 2.1 concerns the limiting
behavior of the coverage probability of the 1 − α credible interval Pn (θ). Theorem 2.2 concerns
the limiting behavior of the credible probability of the 1 − α confidence interval Pn (x̄). When
L = lim

n→∞

√
nτ2 (n) = ∞, the two limiting probabilities lim

n→∞
Pn (θ) = lim

n→∞
Pn (x̄) = 1−α, that is, the

coverage probability of the 1−α credible interval and the credible probability of the 1−α confidence
interval attain the nominal level 1− α in the limit. The specific configuration τ (n) = σ/

√
n in [4]
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corresponds to L = 0 in Theorems 2.1 and 2.2, and thus lim
n→∞

Pn (θ) = lim
n→∞

Pn (x̄) = 0, that is, the

two probabilities can not attain the nominal level 1 − α. The numerical simulations illustrate the
correctness of Theorems 2.1 and 2.2. In summary, we can not blindly assume that a 1− α credible
interval will always be a 1− α confidence interval, or vice versa. The choice of prior matters.
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