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ABSTRACT 
 

The surface roughness has an important influence on the fatigue life of the structures. The fatigue 
life reduces due to the stress concentration caused by surface roughness. The stress 
concentration governs the fatigue crack initiation and propagation. The accurate acquisition of the 
stress concentration factor of rough surfaces is a key issue in determining fatigue life. 
Nevertheless, semi-empirical models may be biased for various machining processes. Besides, 
finite element method simulations cannot give explicit expression of the stress concentration factor. 
Bayesian learning can construct accurate prediction models which offering a number of additional 
advantages. In this paper, based on several data pairs constructed by finite element method, the 
correlation expression between the stress concentration factor and statistical roughness 
parameters of surfaces is established quickly through Bayesian learning. Compared with some 
other semi-empirical models, the accuracy and stability of the proposed method are certified. This 
paper provides a simple and effi-cient approach to determine the stress concentration factor for 
rough surfaces under different processing conditions. 
 

 
Keywords: Surface roughness; stress concentration factor; statistical roughness parameters; 

Bayesian learning. 
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1. INTRODUCTION 
 
The fatigue life of structures is known to 
influence the service life of the structures highly. 
Moreover, the fatigue life depends on the surface 
quality, which will lead to the fatigue crack. There 
are three parameters to describe surface quality: 
(i) surface roughness, (ii) residual stress, (iii) 
microstructure. For some materials, especially 
aluminium alloy, surface roughness is the 
dominant parameter for fatigue life. Surface 
roughness introduces local stress concentration 
governing the crack initiation and propagation. 
The experiments show that the fatigue strength 
increases with a decrease in the surface 
roughness [1]. Therefore, the effect of surface 
roughness on the fatigue life cannot be 
neglected. Surface roughness is described 
through statistical roughness parameters. 
Traditional fatigue life predictions use empirical 
reduction factors to calculate the effect of surface 
roughness [2-5]. However, it is not a simple way 
due to many materials and machining processes. 
The empirical reduction factors need to be found 
for the same machining process through time-
consuming testing. Beyond that method, the 
effect of statistical roughness parameters on the 
fatigue life is proposed in several approaches. In 
those methods, surface roughness is considered 
as causing stress concentration to reduce the 
crack initiation and propagation life. The effect 
can be described through the fatigue stress 
concentration factor Kf. It is defined as  
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 

smooth

rough
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
                                                      (1) 

 
And it can be expressed by the stress 
concentration factor Kt according to  
 

1 ( 1)f tK q K                                                  (2) 

 
This consideration requires the calculation of the 
stress concentration factor to evaluate the fatigue 
life of engineering components [6].  
 

There are two methods to study the influence of 
surface roughness on the stress concentration 
factor. One method is a semi-empirical formula, 
and the other is a numerical simulation. Some 
researchers have treated surface roughness as a 
series of microscopic notches. A stress 
concentration factor Kt is introduced. Neuber [7] 
considered that the surface topography is 
characterized by adjacent continuous gaps and 
proposed to estimate Kt according to 

11t zK n R                                                (3) 

 
where λ refers to the ratio between spacing and 
height of surface irregularities, and n represents 
the conditions (where n=1 represents the shear 
and n=2 represents tensile). Nevertheless, the 
actual value of λ is hard to define for generic 
surface textures. Arola and Ramulu [8] 
suggested a different formula, where 
 

  1 / /t a y zK n R R R                                    

(4) 
 
The surface topography is simplified as an ideal 
sinusoidal micro-notch, and for AISI 430 CR 
steel, this expression can estimate the fatigue 
stress concentration factor (Kf) more accurately. 
Also, Andrews and Sehitoglu [9] treated the 
surface topography as a more common semi-
elliptical notch and gave the expression as 
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    (5) 

 

where the notch width and notch spacing are 
denoted as a and b, the notch depth and tip 
radius are symbolized by c and ρ. The above 
methods simplify the surface topography to 
microscopic notches, making it difficult to 
estimate the surfaces under different processing 
conditions accurately. Another method to study 
the problem calculates Kt from finite element 
method (FEM) simulations of the measured 
surface topography. As et al. [10,11] used the 
FEM description of the surface profile to 
calculate Kt, the surface topography was 
measured using a white light interferometry 
microscope. Suraratchai et al. [12] fitted the 
measured machined surface topography and 
analyzed Kt by FEM simulations. However, the 
FEM simulations cannot give the explicit 
expression of the stress concentration factor. 
Bayesian learning method performs well in 
constructing prediction models. Tripping et al. 
[13,14] introduced the bayes theory and its 
combination with relevance vector machine 
systematically. Whereafter, Sivia at al. [15]and 
Gelman et al. [16] had respectively written a 
comprehensive exposition of the derivation of 
Bayesian learning. Sergio [17] stated Bayesian 
learning from a Bayesian and optimization 
perspective in machine learning. Shufei Ge et al. 
[18] derived a Markov chain Monte Carlo 
(MCMC) algorithm to the Bayesian learning. 
About Markov chain Monte Carlo (MCMC) 
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algorithm, Andrieu et al. and Walter et al. [19,20] 
had detailed introductions in the articles. And 
Bhattacharya et al. [21] completed Gibbs 
posterior inference in Bayesian learning. 
Meanwhile, Hagiwara et al. [22,23] further 
developed hierarchical Bayesian model on 
multimodal information. At present, Bayesian 
learning has been widely used in a number of 
fields. Yuen et al. [24] summarized developments 
of Bayesian model in civil engineering. Ching et 
al. [25] and Kamariotis et al. [26] modeled in 
detail the structural health monitoring with 
Bayesian learning using Gibbs sampler. Huang 
et al. [27], Zhang et al. [28] and Li et al. [29] 
detected structural damage based on 
hierarchical sparse Bayesian learning. Chatterjee 
et al. [30] determined unknown coefficients by 
Bayesian learning in optimization framework 
based robust design. Fox et al. [31] imposed a 
two-level regression model based Bayesian 
estimation in an item response theory model. 
Xiaochen Ma et al. [32] combined sparse 
Bayesian learning with least squares estimation 
for materials’ measurement of echo reduction. 
 

This paper establishes the correlation expression 
between the stress concentration factor and 
statistical roughness parameters of surfaces 
through Bayesian learning. The datasets of Kt 
are first constructed by FEM simulations of 
surface topography. Subsequently, Bayesian 
learning with Gibbs sampler is employed to 
predict expression between stress concentration 
factor and statistical roughness parameters. The 
predicted values are in good agreement with the 
FEM simulations compared with some other 
semi-empirical models, which certified the 
accuracy and stability of the proposed method.  
 

2. MATERIALS AND METHODS 
 

2.1 Finite Element Method  
 

2.1.1 Rough surfaces  

 
The rough surfaces are generated randomly 
through an open-source code in MATLAB [33]. 
The usability of this code has been 
experimentally verified by the proposer. 
According to the study [5], machined surface 
roughness (Ra) values over 0.1 μm, which 
strongly influences fatigue life. With the surface 
roughness (Ra) being less than 0.1 μm, this 
effect diminishes as cracks initiate due to 
persistent slip bands or grain boundaries. 
Therefore, when the surface topography is 
generated, the value of Ra is set to be greater 
than 0.1 μm. Moreover, the lower frequency 

cutoff and the upper frequency cutoff are 
incorporated through a slight modification. The 
surfaces can also be assigned from actual rough 
topographies through a white light interferometry 
microscope. The profile of the generated rough 
surface is shown in Fig. 1, where x represents 
the horizontal position of the rough central axis, 
and L represents the width of the rough surface. 
x/L represents the dimensionless relative 
position. 
 

 
 

Fig. 1. The profile of generated surface 
topography 

 
Surface roughness is characterized through 
statistical roughness parameters such as Ra 
(average roughness), Ry (peak-to-valley height 
roughness), Rz (10-point roughness), and ρ (the 
average profile valley radius). These parameters 
are defined in terms of the profile height 
distribution (z) recorded, in respect to the mean 
line, over an assessment length (L) according to 
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where (zi)max and (zj)min are the five higher local 
maxima and lower local minima, respectively, of 
the profile height distribution (z). 

 
2.1.2 Finite element method simulations  
 
In FEM simulations, the assumption of isotropic 
and homogeneous materials is introduced. When 
calculating the stress concentration factor, only 
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the linear elastic behavior of the material should 
be considered. Firstly, a smooth finite element 
model is established by using the commercial 
software ABAQUS. Then, to realize the surface 
of model is the above profile generated by 
MATLAB, MATLAB programming is used to 
change the surface node coordinates of the 
generated model.  

 
Fig. 2 shows the example of the final generated 
finite element model and simulation performed to 
determine Kt. 

 

 
 

Fig. 2. Finite element model of determining 
the stress concentration factor 

 
For the turning process, the specimens are 
rotated in a lathe. This process produces 
circumferential grooves through a repeated way, 
which can be modelled by an axisymmetric 
model. The height of the model is 5000 μm, and 
the nominal length of the rough surface is 20000 
μm. Uniform tensile load is applied to both ends 
of the boundary. Young’s module E is 72 GPa, 
and Poisson’s ratio ν is 0.33. In FEM simulations, 
axisymmetric quadrilateral elements (CAX4) are 
adopted to discretize the model, in which the 
meshes are gradually coarsened along the r-axis 
from top to bottom. For one of rough surfaces 
(Ra=0.192818, Ry=1.191023, Rz=1.179942, 
ρ=569.1562), the minimum mesh size of the 
adjacent surface topography is 0.4 μm. As 
preparation, the accuracy of our computational 
results has been guaranteed by convergence 
tests. 

 
The stress concentration factor of each point on 
the surface topography is defined as  

nom

K



                                                          (9) 

 

where σ is the Von Mises equivalent stress, and 
σnom is the nominal Von Mises equivalent stress 
of the cross-section, as shown in Fig. 3, where x 
represents the horizontal position of the rough 
central axis, and L represents the width of the 
rough surface. x/L represents the dimensionless 
relative position. 
 

 
 

Fig. 3. The stress concentration factor K of 
each point on the surface topography 

 

And the maximal Von Mises equivalent stress 
obtained by the calculation is then divided by the 
nominal Von Mises equivalent stress due to the 
applied load to determine the stress 
concentration factor Kt classically, expressed as 
 

max
t

nom

K



                                                        (10) 

 

where σmax is the maximal Von Mises equivalent 
stress along with the surface topography. 
 

2.1.3 Data  
 

By FEM simulations, the statistical roughness 
parameters, and corresponding stress 
concentration factor of 41 different specimens 
have obtained, which constitutes the datasets, as 
shown in Table 1. The datasets consist of 41 
data pairs, including Ra, Ry, Rz, ρ these four 
independent variables that characterize the 
properties of rough surface and Kt which 
describe the stress concentration caused by 
surface roughness. The value of Ra is set to be 
greater than 0.1 μm and less than 6.4 μm. The 
range of Ry, Rz, ρ and Kt are (1.19, 44.81), (1.17, 
44.53), (16.14, 569.16) and (1.04, 2.73) to verity 
that this method is applicable to rough surfaces 
under various processing conditions. 



 
 
 
 

Zhang; JERR, 21(7): 59-70, 2021; Article no.JERR.78407 
 
 

 
63 

 

Table 1. Database constructed by FEM simulations 
 

Number Ra/μm Ry/μm Rz/μm ρ/μm Kt 

1 3.555986 26.30374 26.11672 16.99651 2.153361439 
2 4.2303 22.98283 22.69772 25.07418 2.105857375 
3 5.440313 31.41201 31.00602 17.03947 2.638873261 
4 0.772174 4.512271 4.475618 137.147 1.153786981 
5 4.025152 25.22172 25.04139 23.22475 1.963668871 
6 5.583996 30.33734 29.96099 19.03229 2.519425105 
7 4.726791 30.61076 30.35646 26.28119 1.983688209 
8 0.331772 2.402115 2.379683 246.3604 1.09061872 
9 2.4 12.32988 12.24221 36.10878 1.509358561 
10 3.693573 26.18617 25.79348 25.35032 2.040652054 
11 0.192818 1.191023 1.179942 569.1562 1.03880591 
12 6.000485 36.44235 36.27377 17.45057 2.673570711 
13 3.252341 23.35157 23.11154 31.73201 1.863292314 
14 1.92 9.863903 9.793769 45.11696 1.402105278 
15 2.404957 14.19217 13.96398 39.43441 1.640159853 
16 2.400194 14.57694 14.50951 38.80922 1.622350349 
17 1.721862 11.27853 11.23405 56.88085 1.37554257 
18 5.550449 33.70917 33.55324 18.84812 2.535736852 
19 7.066363 44.00704 43.72766 16.13747 2.733849542 
20 1.018625 6.101202 6.014407 93.90284 1.24962646 
21 2.226748 11.31604 11.21579 41.2961 1.480055216 
22 0.792587 3.752242 3.695435 101.3596 1.185491742 
23 5.69759 40.40472 39.95214 17.55418 2.184433519 
24 1.121263 7.949373 7.830165 83.26314 1.299609142 
25 4.074499 24.40481 24.05763 41.9364 2.12358941 
26 5.337771 34.96346 34.82555 18.41903 2.325390202 
27 1.118098 7.006034 6.955942 83.35896 1.247479891 
28 5.59575 32.3095 31.89191 16.57165 2.690652606 
29 2.346066 16.63724 16.45088 42.45231 1.459829098 
30 6.398332 44.80768 44.53094 16.74337 2.546558207 
31 3.053939 17.03504 16.92747 39.79985 1.681130644 
32 1.894048 12.40639 12.35745 51.71469 1.416110263 
33 5.045286 36.30095 36.14158 18.61619 2.129087822 
34 3.890513 23.19896 22.96311 33.14648 1.892614248 
35 4.597006 21.76301 21.43352 17.53594 2.207043075 
36 3.431884 20.05454 19.89164 30.91224 1.751842258 
37 3.400587 23.04051 22.9307 28.43874 1.743377001 
38 4.118261 24.06545 23.86996 25.78116 1.918798908 
39 1.505916 7.129261 7.021326 53.36182 1.362512558 
40 0.606735 37.02597 36.87318 27.83285 2.536359788 
41 0.517418 3.715022 3.676836 199.0674 1.125912072 

 
Table 2. Some empirical models for estimating the stress concentration factor Kt 

 

Empirical models Literature 

11 2t zK R  
 

Neuber 

 
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Arola-Ramulu 
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2.2 Bayesian Learning 
 

According to the existing models, several models 
propose the expression between Kt and the 
statistical roughness parameters of surfaces, as 
shown in Table 1. 
 

Those models can be rewritten as linear models. 
Therefore, the expression is assumed as 

       1 2 3 4ln 1 ln ln lnt a a y a zK R R R R R        

                                                                       (11) 
 

The Bayesian learning [14-17] with Gibbs 
sampler [18-22] is used to estimate ω. 
 

2.2.1 Bayesian theorem  
 

According to the Bayesian theorem and the 
proposed methods of early scholars, the 
expression can be written as a linear 
combination of function Φ of the form   
 

    
0

,
M T

m mmi i iy f


  ω ΦX ω X                 (12) 

 

where yi (Xi, ω) represents the function of 
predicted Kt, expressed as 
 

   n, l 1i i t i
Ky    X ω                                  (13) 

 

Xi represents the independent variables, and the 
Φ is a function of Xi. The ωm are the parameters 
of the model and are generally called weights. 
 
To support additive noise between yi (Xi, ω) and 
ω

T
Φ, the Eq. (7) will be rewritten as  

 

   
0

,
M

i i m m im
y   


 X ω X                        (14) 

 
where ε is assumed to be Gaussian distribution 
expressed as 
 

   10,P                                              (15) 

 
and τ follows Gamma distribution as 
 

     1, a a bP a b b e a       
                    

 (16) 

 

Also, to complete the specification of hierarchical 
prior, choose a zero-mean Gaussian prior 
distribution over ω. 
 

   10,P  ω α ω α                                       (17) 

 

Suitable priors thereover are Gamma distribution, 
which is expressed as 

     1

1

, j

n
dc c

j
j

P c d d e c







   α α           (18) 

 
In Bayesian theorem, the basic idea is to convert 
a prior probability density function for the 
parameters ω into a posterior distribution with 
the data D in the form 
 

 
   

 

P P
P

P


D ω ω
ω D

D
                                 (19) 

 
Thus, the posterior PDF is derived as below by 
Bayesian theorem,  
 

       

 

, , [ ,

] / ( )

P P P P

P P

  ω α D D ω ω α

α D
             (20) 

 
2.2.2 Gibbs sampler  
 
The process for Gibbs sampler is as below [15], 
 
(i) select the training data pairs, 
 
(ii) initialize the parameters α(0) and τ(0),  
 

(iii) For n=1, 2, …, N, Do  
 

sample the parameter ω(n) ~ P (ω|α(n-1), τ(n-1), 
D); sample the parameters α(n) ~ P (α|ω(n), D) 
and τ(n) ~ P (τ|ω(n), D) - IF ω(n), α(n) and τ(n) 
samples reach stationary states 
End For 
 

2.2.3 Burn-in period 
 

In practice, an initial set of samples (burn-in) are 
often discarded to avoid starting biases [20]. The 
period required for the Markov chain to reach its 
stationary state is called the burn-in period. The 
burn-in period is usually determined by plotting 
the Markov chain samples through time. 
Moreover, the samples within the burn-in period 
are discarded. In this paper, by plotting the 
Markov chain samples, the burn-in period is 
obtained by visual inspection. 
 

2.2.4 The stability of the method 
 

The coefficient of determination (R
2
) and mean 

percentage error (MPE) is used to evaluate the 
accuracy of the proposed method, which are 
obtained as below. Where (Kt)i is the i

th
 simulated 

data, ((Kt)pre)i is the i
th
 predicted value. The best 

value for R
2
 is 1.0, and the smaller the value of 

MPE, the better the predicted result.
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       
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                                                                         (21) 

      
1

1
MPE 100%

n

t t ti pre iii

K K K
n 

 
   
 
   (22) 

 
The procedure for a set of experiments is 
described below. Five pairs are randomly 
selected from the datasets as training samples, 
and the rest of the data pairs are testing sets. 
The predicted model of the stress concentration 
factor is obtained by the method mentioned in 
Eq. (20). Comparing the predicted stress 

concentration factor with the simulated value, R
2
 

and MPE are calculated.  
 
A   total    of 1000 experiments are conducted. 
The frequency histogram of MPE and R

2
 are 

plotted in Fig. 4 and   Fig. 5, where “Mean” 
represents    the mean value of 1000 
experiments, and “SD” represents standard 
deviation. By the figures, for 1000 experiments, 
the mean value of MPE is 4.2%, and its standard 
deviation is 0.05. Meanwhile, for most 
experiments, the R

2
 is around 0.94,   and the 

standard deviation is 0.004. MPE and R
2
 remain 

within the error tolerance range,    which   
indicates   the   excellent    stability of the     
method. 

 
 

Fig. 4. Mean percentage error (MPE) of 1000 experiments 
 

 
 

Fig. 5. Coefficient of determination(R
2
) of 1000 experiments 
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3. RESULTS AND DISCUSSION 
 
Firstly, using the five data from datasets as 
training samples, the predicted model of stress 
concentration factor is obtained through the 
proposed method. The first 500 samples of 
10,000 samples obtained by Gibbs sampling are 
discarded because of the burn-in period. Based 
on the remaining 9,500 samples, the predicted 
mean stress concentration factor is calculated 
from their means and standard deviations. The 
predicted formula between Kt and statistical 
roughness parameters of the surfaces is 
expressed as 

 

 

0.223 0.122 0.549

1 1.915 a a a
t

y z

R R R
K

R R 


     

            

        (23) 

 

To make the results more intuitive, each 
predicted Kt in the 41 datasets are compared 
with the simulated Kt in Fig. 6. It is showed by 
open circles from mean Kt and error bars for 
uncertainly in terms of Kt+1.96SD, where SD is 
the standard deviation of each predicted Kt, to 
show the ranges of data. Fig. 6 also includes the 
true 1:1 line for comparison. It shows that open 
circles fluctuate around the 1:1 line, and most 
samples have relative errors smaller than 10%, 
and all samples smaller than 20%. The maximum 

error is found to be 15.4%, and the average error 
is 3.7%. For quantitative the predicted model, R

2
 

and MPE between predicted and simulated Kt 
are calculated, obtained as R

2
=0.95, 

MPE=3.76%. The large R
2
 and small MPE 

together indicate that the predicted model is 
reasonably accurate.   

 
For comparison, Fig. 7 also includes the stress 
concentration factor predicted by the Neuber 
model and Arola- Ramulu model. Kt predicted by 
the proposed method is closer to the 1:1 line, 
which indicates our predicted values are more 
consistent with the simulated values than the 
other two models. The average error of these two 
models is 9.87% and 21.23%, while for the 
proposed method, the average error is 3.76%. 

 
To verify the influence of the number of data 
pairs (ns) on estimation performance, the 
randomly 5, 15, 30 groups of datasets are 
selected as training samples to obtain the 
corresponding predicted expressions. The 
predicted Kt are compared with simulated Kt, as 
shown in Fig. 8. The values predicted by the 
three correlation expressions all fluctuate around 
the 1:1 line. Furthermore, R

2
 and MPE of three 

correlation expressions are plotted in Fig. 9. R
2
 

and MPE are kept around 0.94 and 4%, 
respectively. 

 

 
 

Fig. 6. Predicted versus simulated Kt 



 
 
 
 

Zhang; JERR, 21(7): 59-70, 2021; Article no.JERR.78407 
 
 

 
67 

 

 
 

Fig. 7. Estimation results of Kt by the proposed method, Neuber model and Arola- Ramulu 
model 

 

 
 

Fig. 8. Predicted Kt obtained by different ns (ns=5, 15, 30) versus simulated Kt 
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Fig. 9. R
2
 and MPE calculated by different ns (ns=5, 15, 30) 

 
It indicates no significant effect on the predicted 
results with decreasing the number of training 
samples in the appropriate range. In other words, 
the estimated error of the proposed method is on 
the reasonable range when the number of data 
pairs decreases. The results demonstrate that 
the proposed method performs well under limited 
training sets. 

 
The above analysis proved that the proposed 
method could efficiently obtain the stress 
concentration factor explicit and has better 
accuracy than the previous models. Moreover, 
this method is quite convenient to be conducted 
through only a few FEM simulations or tests for 
certain machining processes. 

 
4. CONCLUSION 
 
This article proposes a novel Bayesian learning 
to obtain correlation expression between the 
stress concentration factor and statistical 
roughness parameters. The training samples and 
testing samples are selected from the database, 
which is constructed by FEM simulations. Using 
the Bayesian learning with Gibbs sampler, the 
correlation expression between the stress 
concentration factor and statistical roughness 
parameters of the surfaces is estimated. The 
accurate correlation expression gives good 
agreements with direct FEM simulations, which 
demonstrates the feasibility of using the 
proposed method. Compared to other models, 
the proposed method has the advantages of high 
accuracy and broad adaptability. In conclusion, 

this work demonstrates the viability of using 
machine learning to predict the stress 
concentration factor. It provides a simple and 
efficient approach to obtain the predicted stress 
concentration factor for the rough surfaces under 
a specific type of processing. 
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