Open Journal of
Mathematical Analysis PER Feeie

Article
Existence of solution for a nonlinear fifth-order three-point
boundary value problem

Zouaoui Bekril* and Slimane Benaicha?

1 Laboratory of fundamental and applied mathematics, University of Oran 1, Ahmed Ben Bella, Es-senia, 31000 Oran,

Algeria.

Laboratory of fundamental and applied mathematics, University of Oran 1, Ahmed Ben Bella, Es-senia, 31000 Oran,
Algeria.; slimanebenaicha@yahoo.fr

*  Correspondence: zouaouibekri@yahoo.fr

Received: 2 September 2019; Accepted: 22 October 2019; Published: 31 December 2019.

Abstract: In this paper, we explore the existence of nontrivial solution for the fifth-order three-point boundary
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u'(0) = u"(0) =0, u(l) = au(y), where 0 < 4 < 1, & € R, ay* # 1, f € C([0,1] x R,R). Under
certain growth conditions on the non-linearity f and using Leray-Schauder nonlinear alternative, we prove
the existence of at least one solution of the posed problem. Furthermore, the obtained results are further

illustrated by mean of some examples.
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1. Introduction

he study of fourth-order three-point boundary value problems (BVP) for ordinary differential equations
T arise in a variety of different areas of applied mathematics and physics. Various authors studied the
existence of positive solutions for nth-order m-point boundary value problems using different methods, for
example, fixed point theorems in cones, nonlinear alternative of Leray-Schauder, and Krasnoselskii’s fixed
point theorem, see [1-5] and the references therein.

In 2003, by using the Leray-Schauder degree theory, Liu and Ge [6] proved the existence of positive
solutions for (n — 1,1) three-point boundary value problems with coefficient that changes sign given as

follows:

¢Wﬂ+M®ﬂ(» 0, te(0,1),
u(0) =au(y), u(l)=pu(n), (0) =0 fori=1,2,.,n—-2,
and u"2(0) = a2 (), "2 (1) = pu"2 (), u?(0 ):O for i=1,2,.,n-3
where 7 € (0,1),« > 0,8 > 0,and a : (0,1) — R may change sign and R = (—oc0,0), f(0) > 0, A > Oisa
parameter.

In 2005, Eloea and Ahmad [7] studied the existence of positive solutions of a nonlinear nth-order
boundary value problem with nonlocal conditions as follows:

ul(8) +a(t)f(u(t) =0, te(0,1),
u(0)=0, u(0)=0,..,u"2(0)=0, au(y)=u(1),

where 0 < 7 < 1,0 < ay"~! < 1, f is either superlinear or sublinear.
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In 2009, Bai et al. [8] used fixed-point theory to study the existence of positive solutions of a singular
nth-order three-point boundary value problem on time scales represented as:

u'(t) +a(t)f(u(t)) =0, te(0,1),
u(a) = au(y), u (a) = 0,...,u(”*2)(a) =0, u(b)=pBul(y),
wherea <7 <b,0<a<1,0<B(np—a)"'<(A—-a)b—a)" '+a(y—a)*, f € C([ab] x[0,00),[0,0))

and h € C([a, b],[0,00)) may be singular at t = g and t = b.
In 2004, Sun [9] studied the existence of nontrivial solution for the three-point boundary value problem:

u' () + f(tu(t) =0, 0<t<1,

W (0)=0, u(1)=au(y),

where 7 € (0,1), « € R, f € C([0,1] x R,R). The same author in [10], studied solvability of a nonlinear
second-order three-point boundary value problem:

W' () + f(Lu()) =0, 0<t<1,
W (0)=0, u(1)=au(y),
wherey € (0,1),a € R,a #0, f € C([0,1] x R, R).

Li and Sun [11], also used the same method to study nontrivial solution of a nonlinear second-order
three-point boundary value problem:

W' () + f(Lu(t) =0, 0<t<1,
au(0) —bu' (0) =0, u(1) —au(y) =0,

wheren € (0,1),4,b,a € R, with a2 + b2 > 0.

Motivated by the above work, we extend the results obtained for second-order boundary value problem to
fourth-order boundary value problem using a different method from [7]. We prove the existence of nontrivial
solution for the fourth-order three-point boundary value problem (BVP):

u® (£) + f(u(t)) 0<t<l. 1)

=0,
u(0) =0, u'(0)=u (0)=u (0)=0, u(1)=au(y), @)
where0 <7 <1l,a € R,an* #1,f € C([0,1] x R,R), R = (—00,00).
This paper is organized as follows: in Section 2, we present two lemmas that will be helpful in proving

our main results, in Section 3, we present our main results and finally, in Section 4, we illustrated our results
with examples.

2. Preliminaries
Let E = C[0,1] with the norm ||y|| = SUPyc(o 1 ly(t)| for any u € E. A solution u(t) of the BVP (1)-(2) is
called nontrivial solution if #(t) # 0. To get our results, we need to the following lemma.

Lemma 1. Let y € C([0,1]), an* # 1, then the boundary value problem

u® ) +y(t) =0, 0<t<1,

/! 1 g

u(0)=0, u(0)=u (0)=u (0)=0, u(l)=au(y),
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Proof. Rewriting the differential equation as u(5) (t) = —y(t), and integrating five times from 0 to 1, we obtain
u(t)——i t(t—s)4 (s)ds+ﬁc+fc +ﬁc +tes+c 3)
~ 24y Y 24" T et T T

By the boundary conditions (2), we have

"

u(0)=0, v 0)=u"(0)=u (0)=0, ie.cir=cr=c3=c4=0,

1 1 «
c= 7(1 vy /0 (1- s)4y(s)ds — 7(1 oy /0

Compensate Equation (3) in the Equation (4), we obtain

"= 5)y(s)ds. )

1 gt # 1 at?

u(t) = 5 = Pye)as + g [ =)y = s [T =)y

This completes the proof. [

Define the integral operator T : E — E, by

t 4 4
Tu(t) = 55 [ = s+ gyt [ s - s [ -9t s o).
©)

By Lemma 1, the BVP (1)-(2) has a solution if and only if the operator T has a fixed point in E. So we only
need to seek a fixed point of T in E. By Ascoli-Arzela theorem, we can prove that T is a completely continuous
operator. Now we cite the Leray-Schauder nonlinear alternative.

Lemma 2. [1]. Let E be a Banach space and Q be a bounded open subset of E,0 € Q. T : Q — E be a completely
continuous operator. Then, either

(i) there exists u € Q) and A > 1 such that T(u) = Au, or

(ii) there exists a fixed point u* € Q of T.

3. Existence of nontrivial solution

In this section, we prove the existence of a nontrivial solution for the BVP (1)-(2). Suppose that f €
C([0,1] x R,R).

Theorem 3. Suppose that f(t,0) # 0, an* # 1, and there exist nonnegative functions k,h € L1[0,1], such that
|f(t,x)] < k(t)|x|+h(t), ae (tx)e€l0,1] xR,
1 1 1 || U
—t—— 1—5)%(s)d 7/ —5)*k(s)ds < 1.
(24 *oan oc174|> /o (L= s)k(s)ds + 5=y Jy (11— 8)k(s)ds <
Then the BVP (1)-(2) has at least one nontrivial solution u* € C[0,1].

Proof. Let

/1 1 1 4 ] T 4
= (o gy ) 090 g g [

_ 1 1 1 4 |‘X| 1 4
N (o ) o 0900 g [ =

Then M < 1. Since f(t,0) # 0, there exists an interval [a,b] C [0,1] such that min,<;<; |f(¢,0)| > 0, and
ash(t) > |f(t,0),ae. t € [0,1], we have N > 0.



Open J. Math. Anal. 2019, 3(2), 125-136 128

Let A=N(1-M)land Q = {u € E: ||ul| < A}. Assume that u € 9Q and A > 1 such that Tu = Au,
then

A= Allull = |Tull = max |(Tu)(®)
4 .
< g = U nle) s g | 0= 95 )
lX4
I |3t | fy 1S G uls))las
1 1 1 .
- (24+24|1_M74|>/0 (1—s) |f(s,u(s))|ds+724|1 m4|/ $) 1 (s, u(s))|ds
< (g gy ) Jy O 9Ol + g [ =k s
1 1 1 ]
+<24+24|1an4|)/o(1_s)4h(s)ds+z4|1 uc174|/ (1 = 5)*h(s)ds
—  Mlju|| +N.
Therefore, N N

This contradicts A > 1. By Lemma 2, T has a fixed point u* € Q. In view of f(t,0) # 0, the BVP (1)-(2)
has a nontrivial solution u* € E. This completes the proof. [

Theorem 4. Suppose that f(t,0) # 0, an* < 1, and there exist nonnegative functions k,h € L'[0, 1], such that
If(t,x)| < k(t)|x|+h(t), ae (tx)e[0,1]xR.

If one of the following conditions holds:

1. there exists a constant p > 1 such that

7

1 241 —ayH(1+49)1]" 1 1
k(s)Pds < —+-=1
/0 (s)Pds [2 — 0(174 + |a|77(1+4q)/q P q

2. there exists a constant y > —1 such that

Ks) < (1—0074)(1+#)(2+u)(3+#)(4+u)(5+;4)
B 2 — at + Jafy>tH

ae. s€[0,1],

—an?
meas{s € 0,1] : k(s) < U= +2;t>_<i;;pt+)<|i|;5ﬁl(4+ MOEK) gy 5 g,

3. there exists a constant y > —5 such that

o < Bl

meas {s €[0,1] : k(s) < 24 (1_:(;74)_55; V)( )V} > 0;

ae. s€0,1],

4. k(s) satisfies

120(1 — an*) 120(1 — an*)
</ 1T qe : 1/
k(s) < =i T el ae. s€[0,1],meas<s € [0,1] : k(s) < =gt >0,

then the BVP (1)-(2) has at least one nontrivial solution u* € E.
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Proof. Let M be defined as in the proof of Theorem 3. To prove Theorem 4, we only need to prove that M < 1.
Since a* < 1, we have

]

M= (55 gy ) o O K6+ s [ 9tk

— 4 1
- 24%1_“2;74)/0 (1 —s)*k(s)ds + M(l'f'“ﬂ‘*) /07](,7 — 5)*k(s)ds.

1. Using the Holder inequality, we have

Uol k(S)Pds} v {M [/01(1 — s)4qu} o + 24(1|f|0c774) [/077('7 - s)4qu] 1/41}

1 1/p ah 1+4q
/ k(S)pdS 2 &n ( 1 )1/q+ |a| (;7 )1/q
0 24(1—an*) " 1+4q 24(1—an*) " 1+4q
24(1 — ) (1 +49)"7 2 — gt + a0/
2 — ot + |afy (49707 24(1 — ant) (1 + 49)1/4
= 1

=
IA

IN

2. Here, we have

(I—a )+ 2+ p)B+u)E+u)(5+p)
M < 2 —an* + |a|pdtH

_ ot 1
X {M/ (1—s)*s ds+ /0’7 s”ds]
- (1—an4)(1+u)(2+u)(3+#)4+u {2—0417 1
- 2 — anpt + |a|y> (T—an®) (T+w)2+u)B+u)(4+u)(5+n)
Lo U ]
(T—an*) A+u)2+p)B+u)(d+pu)(5+n)
Q=)@+ )@+ )G+ )+ p)(5+p) 2 — ot + |afytH
2 —ant + |a|y> (A =an )1+ uw)2+u)B+u)(4+u)(5+n)
- 1

3. Here, we have

241 — a5+ u) [ 2—an? /1  dra |at| /’7 VYRR }
M < > ani it Jal 2401 an) 0(1 s) ds+724(1_m74) (n —s)*(1—s)tds

24(1 —an*)(5 [ 2—apt 1 w
(2 - a;74)4£ |zx+|y) 24(1 Z}y4) /0 (L—s)*ds + 24(1|—|m7 1 / (1 _S)HMS]
24 —agt)5+p) [ 2—ant L || 1 }
2—anpt+ o] |24(1—an*) 5+u 241 —an*) 5+ pu
241 —an®)(5+u) 2 —an*+ |«
2—ant+|a] 241 —an*)(5+ n)

IN

4. Here, we have

120(1 — an*) 2 —ant /1 4 || /71 A
M 1—s)*ds+ —~—— —s)%d
- an* + |aln® (241 —an*) Jo (1—s)%ds + 24(1 —an*) Jo (7 =s)"ds
1201 — an*) 2 —an* + |a|y®
2 —an*+ |aln®” 120(1 — an?)

This completes the proof. [J
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Theorem 5. Suppose that f(t,0) # 0, an* > 1, and there exist nonnegative functions k,h € L'[0,1] such that
If(t,x)| <k(t)|x|+h(t), ae (tx)e]0,1]xR.

If one of the following conditions holds:

1. there exists a constant p > 1 such that

1 24(ay* —1)(1 +4)0 " 1 1
p o2 _q).
/0 K(s)ds < [ a(nt + y(+4a)/q) ’ < " q 1>'

2. there exists a constant y > —1 such that

k(s) < (06774_1)(1—|-V)(2+V)(3+y)(4+y)(5+y)sy

, a.e. s€|0,1],
a(n® + 7t 0.1

meas {s €1[0,1] : k(s) < (e = 1)1+ V)OE?;T_)SJ)V)M DIChS ‘u)S”} > 0;

3. there exists a constant y > —5 such that

24(an* —1)(5+p)
a(nt+1)

k(s) < (1-9)¥, ae se][0,1],

24(an* —1)(5+p)
a(n*+1)

meas{s € [0,1] : k(s) < (1-s)¥} >0;

4. k(s) satisfies
120(an* — 1)
a(n* +1°)

' 120(an* — 1)
meas {s €1[0,1] : k(s) < "‘(’74+’75)} >0,

k(s) <

, ae. s€0,1],

then the BVP (1)-(2) has at least one nontrivial solution u* € E.

Proof. Let M be defined as in the proof of Theorem 3. To prove Theorem 5, we only need to prove that M < 1.

Since a* > 1, we have
M = "”74/1(1—5)4k(s)ds+“/”( — 5)*k(s)ds
 24(ant—1) Jo 24(an* —1) Jo T

B 24@;74_1)[’74 /01(1 —5)*k(s)ds + '/0"(;7 — 5)*k(s)ds].

1. Using the Holder inequality, we have

1 1/p ant 1 1/q N i 1/q
< p # _o\4 _ O\
Mo | o] {24<an4—1> s ey L) e }
1 1/p ant 1 x 1+4q
< p n 1/q n 1/q
- Uo Ke) ds} {24(067741)(1+4q) +24((x11471)(1+4q) }
24 (wn* —1) A +4q)7 a4y
a(p+yHaa/a) T 24(ant —1)(1+4q)V0

2. Here, we have

M - (M74—1)(1+u)(2+;4)(3+u)(4+u)(5+#)[ an?
a(nt 4 1>tH) 24(ant —1)

1
/ (1—s)4stds
0
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o 7
+ m/{) (17—5)45”615}
o (et =DA+mQ+p)@+uw)(+m)5E+p) { an 1
- a(yt 4 >tH) (et =1) A+ u)2+p)B+u)(d+pu)(5+n)
N o y 175-&-;1 ]
(et —=1)  A+pw)2+uw)B+u)d+u)5+n)
(=D A+ )R+ B+ W)@+ 1) (5 + ) a(* + )

a(nt 4 otH) ant =)+ )2+ u)B+p)(4+u)(5+p)
- 1

3. Here, we have

U@t —1)G+p) [ eyt Lo e & T — VA1 — )
M < S+ 1) _24(0”74_1)/0 (1—5) ds+24(m?4_1)/0 (n —s)*(1—s)tds
A4yt —1)(+p) [ ay* /1 at a /1 4
< — I - —g)dtnu
= S D) |2 Jo LTSS Ty Jy LS
24t —1)5+u) [ an? L pt 1 }
N a(nt+1) 1 24(an* —1)'5+pu  24(ay*—1)5+u

24(an* —1)(5+ ) a(p*+1)
a(nt+1) 24(at —1)(5+u)

4. Here, we have

120(an* — 1) an’ 1 N ]
a(n* +n°) [24(0014—1)/0 (1 _S)4ds+m/o (n —s)4ds}
120(an* —1) a(yt+4°)
a(yt+n5) "120(ant —1)

M

=1.

This completes the proof. [
Corollary 6. Suppose f(t,0) # 0, an* < 1, and there exist nonnegative functions k,h € L'[0,1] such that
|f(t,x)| < k(t)|x|+h(t), ae (tx)e[0,1] xR

If one of following conditions holds:

1. there exists a constant p > 1 such that

1
7 7+7:11

1 24(1 — an*) (1 + 4¢)1/1 P
k(s)Pd ;
/0 (®) s<[ 2 —an* + |af poq

2. there exists a constant y > —1 such that

k(s) < (1_0074)(1+H)(2+V)(3+y>(4+‘u)(5+y)s;4/

2 —ant +Ja| ae. s€0,1],
~ant
meas{s € [0,1] : k(s) < (= ey +H)2<2_252(i;r)(4+y>(5+y)s”} > 0;
3. k(s) satisfies
120(1 — ay?)

k(s) <

—_— .e. s€ 0,1},
2 —ant + | ae. s€[01]
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. 120(1 — ant)
meas {5 € 1] :k(9) < 202 0

then the BVP (1)-(2) has at least one nontrivial solution u* € E.

Proof. We have

2— 0(774 la|

1—s)*k(s)ds + 5

1
T ar) /0 (1 — 8)*k(s)ds

1
= 24(1 — an?) /0 (

_ 2—apt+a| 4
= A —aph) 0(1 s)*k(s)ds.

Proof of this corollary 6 is the same method in the proof Theorem 4. The proof is complete. [

Corollary 7. Suppose that f(t,0) # 0, ag* > 1, and there exist nonnegative functions k,h € L'[0,1] such that
|f(t,x)| < k(t)|x| +h(t), ae (tx)€][0,1] xR.

If one of the following conditions holds:

1. there exists a constant p > 1 such that

1 a4t —1)(1+49)1]" 1 1
k(s)Pd ;o —4+-=1;
/o (s)ds < l a(nt+1) oy - '

2. there exists a constant y > —1 such that

wt 1) 1+ +m) G+ @+ G+u) ,

(
Ko = G+ 1)

, ae se0,1],

meas {s €[0,1] : k(s) < (wr* ~1) (1+H)(iafzf?;_#>(4+y)(5+y)s”} > 0;

3. k(s) satisfies
- 120(ayp* — 1)

k , .e. s€0,1],
)< St oo s )
4 _
meas {s €[0,1] : k(s) < %} >0,
then the BVP (1)-(2) has at least one nontrivial solution u* € E.
Proof. We have
4 1
_ ar 4 a T N4
M = 24(0”74_1)/0(1 ) k(s)ds+24(m4_1)/o (7 — 5)*k(s)ds
4 1 1
an 4 u / 4
< —1 [ - — | (-
< 24(0074_1)/0( V()s + gy [ (1= 9)*(s)ds
4 1
_ M/ (1 — 5)*k(s)ds.
24(an* —1) Jo

The rest procedure is the same as for Theorem 5. This completes the proof. [J

4. Examples

In order to illustrate the above results, we consider some examples.
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Example 1. Consider the following problem

u® + tusinu? —Vt+2=0, 0<t<1,

(6)
u(0) =0, u'(0)=u"(0)=u"(0)=0, u(l)=—3u(1/2)
Sety =1/2,&a = —3,and
t
f(t,x) = gxsinx2 —Vt+2,
k(t)=t, h(t)=+Vt+2,
It is easy to prove that k, i € L[0, 1] are nonnegative functions, and
|f(t,x)] < k(t)|x|+h(t), ae (tx)e[0,1] xR,
and 3
4_ _ 2
= —gg # 1.
Moreover, we have
1 1 1 || U
(24 +24|1—m74)/0 (=) k(s)ds & Sam =y Jy (1= s)k(s)ds
105 /1 . 6 [1/2 /1 4 105 6
M= 1568 Jy 1 —s)sds+ 57 |, (2 _S> 545 = 110a0 T 109420 < -
Hence, by Theorem 3, the BVP (6) has at least one nontrivial solution u* in E.
Example 2. Consider the following problem
u® 4+ 2/5‘17 Vusz”u cosud — et + 1m: 0, 0<t<1, )

u(0) =0, u'(0)=u"(0)=u
Setn =1/4,a = —4,and

(0) =0, u(1)=—4u(1/4).

_2/3\B+1 s
f(t,x)—wxcosx e+1,
K(E) = 2VBFE h(t) = +1.

3

It is easy to prove that k, i € L[0, 1] are nonnegative functions, and
Lf(t,x)] < k(t)|x|+h(t), ae (tx)e]0,1] xR.

and

Let p = q = 2, such that % + % =1, then

1 14 34
p = — = —
/0 K(s)ds /0 9(8+S)ds 9°

Moreover, we have

[24(1 — ) (1 + 49)1/17

P
= 1307.88.
2 —ant + |a|y(+4a)/q ] 307.88

Therefore,

/Olk(s)pds <

24(1 — ag®)(1 +49)1]"
2 —an* + |a|y(+49)/q
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Hence, by Theorem 4(1), the BVP (7) has at least one nontrivial solution #* in E.

Example 3. Consider the following problem

(6)  ___u _ ,—cosu _9p_ | —
u +7(4+u2)%e cos 2t—1=0, 0<t<1,
®)
u(0)=0, u0)=u"(0)=u"(0)=0, u(l)=—3u(1/3).
Sety =1/3,a = =3, and
x
LX) = ——————e Y 2t 1,
flt:x) 7(4+ x2)V't
1
k(t) = ——=, h(t)=2t+1.
()= 757 A0
It is easy to prove that k, i € L![0, 1] are nonnegative functions, and
If(t,x)| < k(t)|x|+h(t), ae (tx)e[0,1]xR.
and
an* = L <1
T
Letu = —% > —1, then
(L) (1 + )+ p)B+mE+ WG+ _ o
—an? 5+ T oen
2 — o+ |afy>tH
Therefore,
1 1 1 _1
k(s) = 77 =573 < 16.873.573,
it
eds {S € [0,1] : k(s) < L= )(1+#)(2+414>(3 +5.u)(4+ﬂ)(5+]’l>sy} S0
2 — ot A |afyrr
Hence, by Theorem 4(2), the BVP 8 has at least one nontrivial solution #* in E.
Example 4. Consider the following problem
(5) 3u’ ; 5_1_—
u +7(1+u2)msmu+t 1=0 0<t<], o

u(0)=0, u(0)=u (0)=u (0)=0, u(l)=-2u(1/2).
Setn =1/2,&a = —2,and

B 3x3 ) 5
f(t,x) = 7122 AT sinx +1 —1,
3 5
MO = S MOt

It is easy to prove thatk,h € ! [0, 1] are nonnegative functions, and
Lf(t,x)| <k(t)|x|+h(t), ae (tx)e]0,1]xR.

and
an® = —= <L
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Letu = —% > —4, then
24(1—an*)(5+pu) 2808
2—ant+la] 337

Therefore,

meas {s € [0,1] : k(s) <
Hence, by Theorem 4(3), the BVP (9) has at least one nontrivial solution #* in E.
Example 5. Consider the following problem

5 t t _
”()+2(THL¢2‘)+€ —-3=0, 0<t<],

(10)

! " "

u(0)=0, u(0)=u (0)=u (0)=0, u(l)=-5u(1/5).
Setny =1/5,a = -5, and

f(t,x) = ﬁ +et -3,
k(t):é, ht) = o +3.

It is easy to prove that k, i € L[0, 1] are nonnegative functions, and
Lf(t,x)] < k(t)|x|+h(t), ae (tx)e]0,1] xR

and 1
4 PP
Mt = =18 <1
Moreover, we have
120(1 —an*) 9450

2—an*+|alp® 157 °

Therefore,
s 9450
k(S) 3 < ﬁr S [Orl]’
120(1 — an*
meas {s €[0,1] : k(s) < 0(40”7)5} >0
2 —an*+ |aly

Hence, by Theorem 4(4), the BVP (10) has at least one nontrivial solution #* in E.
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