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Abstract: Harmonic convexity is very important new class of non-convex functions, it gained prominence in
the Theory of Inequalities and Applications as well as in the rest of Mathematics’s branches. The harmonic
convexity of a function is the basis for many inequalities in mathematics. Furthermore, harmonic convexity
provides an analytic tool to estimate several known definite integrals like
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xn dx ∀n ∈ N, where a, b ∈ (0, ∞). In this article, some un-weighted inequalities of Hermite-Hadamard
type for harmonic log-convex functions defined on real intervals are given.
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1. Introduction

D uring the investigation of convexity, many researchers founded new classes of functions which are
not convex in general. Some of them are the so called harmonic convex functions [1], harmonic

(α, m)-convex functions [2], harmonic (s, m)-convex functions [3,4] and harmonic (p, (s, m))-convex functions
[5]. For a quick glance on importance of these classes and applications, see [1–19] and references therein.

Definition 1. A function f : I ⊆ R\{0} → R is said to be harmonic convex function on I if

f
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)
≤ t f (y) + (1− t) f (x) (1)

holds for all x, y ∈ I and t ∈ [0, 1]. If the inequality is reversed, then f is said to be harmonic concave.

In [5,20], Baloch et al. and Noor et al. also gave the definition of harmonic log-convex functions as follow:

Definition 2. A function f : I ⊆ R\{0} → (0, ∞) is said to be harmonic log-convex function on I if

f
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)
≤ [ f (x)]1−t[ f (y)]t (2)

holds for all x, y ∈ I and t ∈ [0, 1]. If the inequality is reversed, then f is said to be harmonic log-concave.

In [20], Noor et al. proved the following result for harmonic log-convex functions:

Theorem 3. Let I ⊆ R\{0} be an interval. If f : I → (0, ∞) is harmonic convex function, then
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for all a, b ∈ I and a < b.

Here, motivated by the above result we study the class of harmonic log-convex functions and present
some new inequalities for this class of functions.

2. Main Results

The following result holds.

Theorem 4. Let f : I ⊆ R\{0} → (0, ∞) be harmonic log-convex function. Then, for every t ∈ [0, 1], we have
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Proof. The cases t = 0, 1
2 , 1 are obvious. Assume that t ∈ (0, 1)\
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}
. By the harmonic log-convexity of f we

have
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for any x ∈ [a, b]. This allows that
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Integrating the inequality (6) over x on [a, b], we have

∫ b

a
[ f (x)]1−t

[
a2b2

[(a + b)x− ab]2
f
(

abx
(a + b)x− ab

)]t

dx ≥
∫ b

a

a2tb2t

[(a + b)x− ab]2t f
(

abx
(a + b)tx− (2t− 1)ab

)
dx.

Since t 6= 1
2 , then u = abx

(a+b)tx−(2t−1)ab is the change of variable with dx = (1−2t)a2b2

[(a+b)tu−ab]2 du. For x = a, we

get u = ab
ta+(1−t)b and for x = b, we get u = ab

(1−t)a+tb . Therefore,

∫ b

a

a2tb2t

[(a + b)x− ab]2t f
(

abx
(a + b)tx− (2t− 1)ab

)
dx = (1− 2t)a2b2

∫ ab
(1−t)a+tb

ab
ta+(1−t)b

[(a + b)tu− ab]2(t−1)

[ab− (1− t)(a + b)u]2t f (u)du,

and hence the second inequality (4) is proved. By the Hölder integral inequality for p = 1
1−t , q = 1

t , we have
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This proves the first part of inequality (4).
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