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1. Introduction

I t is assumed that the reader is familiar with the general notation and concepts in graphs. Good references
are [1–3]. Throughout the study only finite, simple and undirected graphs will be considered. A paper

which introduces the notion of the degree affinity number of a graph has been communicated, (see [4]).
It is known that a graph of order n ≥ 2 has at least two vertices of equal degree. We recall that if two

non-adjacent vertices u, v ∈ V(G) with degG(u) = degG(v) exist, then the added edge uv to obtain G′ is called
a degree affinity edge. For ease of reference we also recall the maximal degree affinity convention.

Maximal degree affinity convention (MDAC)

For a graph G the 1st-iteration is the addition of degree affinity edges in respect of a maximal number of
absolute distinct pairs of distinct non-adjacent vertices of equal degree, if such exist [4]. The graph obtained is
labeled G1. Hence, by the same convention it is possible to construct Gi from Gi−1 provided that at least one
(absolute distinct) pair of distinct non-adjacent vertices of equal degree exists in Gi−1. The MDAC terminates
on the kth-iteration if no further edges can be added.

We recall certain important results from [4].

Theorem 1. [4] For an even cycle Cn, n ≥ 4 the MDAC exhausts after k = n− 3 iterations, η(Cn)n,even = n(n−3)
2 and

Gn−3 ∼= Kn.

Corollary 1. [4] For an odd cycle Cn, n ≥ 5 the MDAC exhausts after k = n − 3 iterations and η(Cn)n,odd =
(n−2)(n−3)

2 .

If a graph G has structural complexity, then finding η(G) could be simplied by considering G. However
the dual problem must be considered. The dual to finding η(G) is the deletion of the maximum number degree
affinity edges from G. The procedure is the iterative inverse of the MDAC and is denoted by, MDAC−1. If a
null graph (edgeless graph) results we say G reached nullness.

Theorem 2. A graph G reaches completeness on exhaustion of the MDAC if and only if G reaches nullness on exhaustion
of the MDAC−1.

Proof. If G reaches completeness on exhaustion of the MDAC then the set of degree affinity edges added is
exactly, E(G). By listing the degree affinity edges say si added to G per MDAC iteration i = 1, 2, 3, . . . , k the
inverse iterative deletion of degree affinity edge-lists sj in G for j = k, k− 1, k− 2, . . . , 1, results in nullness.
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The converse follows through similar reasoning. Therefore the result.

In this paper we further the study in [4] for certain 2-regular graphs.

2. On regular graphs

To study the disjoint union of graphs, we distinguish between degree affinity edges internal to a graph G
and those external to G. Let V(G) = {vi : 1 ≤ i ≤ n} and V(H) = {uj : 1 ≤ j ≤ m}. In the disconnected graph
G ∪ H and through all iterations of the MDAC applied thereto, degree affinity edges of the form vivk or ujut

are called internal to G or H, respectively. Degree affinity edges of the form viuj are called external to both G
and H. Furthermore, if all vertex degrees degG(vi), vi ∈ V(G) are weighted by a constant a ∈ N we denote the
graph with weighted degrees by, G+a.

Lemma 1. If graph G of order n has degree sequence (degG(vi) : degG(vi) ≥ degG(vi+1), 1 ≤ i ≤ n− 1) and G+a

has degree sequence (degG(vi) + a : degG(vi) ≥ degG(vi+1), 1 ≤ i ≤ n− 1) then the degree affinity properties of G+a

are identical to that of G.

Proof. Since

(a) vivj ∈ E(G) and degg(vi) = degG(vj) in G⇔ vivj ∈ E(G+a) and degg(vi) + a = degG(vj) + a in G+a or;
(b) vivj ∈ E(G) and degg(vi) 6= degG(vj) in G⇔ vivj ∈ E(G+a) and degg(vi) + a 6= degG(vj) + a in G+a or;
(c) vivj /∈ E(G) and degg(vi) = degG(vj) in G⇔ vivj /∈ E(G+a) and degg(vi) + a = degG(vj) + a in G+a or;
(d) vivj /∈ E(G) and degg(vi) 6= degG(vj) in G⇔ vivj /∈ E(G+a) and degg(vi) + a 6= degG(vj) + a in G+a,

the result follows immediately.

An immediate consequence of Lemma 1 follows.

Theorem 3. Let graphs G and H both be of order n and r-regular then, η(G ∪ H) = η(G) + η(H) + n2.

Proof. Clearly, the disjoint union G ∪ H is of order 2n. Hence, for each of the initial n iterations there exist n
distinct pairs of distinct vertices {u, v}, u ∈ V(G), v ∈ V(H) such that uv /∈ E(G ∪ H) and deg(G∪H)i−1

(u) =
deg(G∪H)i−1

(v) = degG(u) + (i− 1) = degH(v) + (i− 1). Therefore, after the initial n iterations all the possible
degree affinity edges between G and H have been added. Without loss of generality, the graph G can be
viewed as a graph with weighted vertex degrees i.e., G+n. By Lemma 1 the degree affinity properties of G+n

are identical to that of G, (similarly for H+n). The MDAC is now simultaneously applied to G+n and H+n.
Thus, η(G ∪ H) = η(G) + η(H) + n2.

Applying Theorem 3 could present difficulty. It is easy to see that if both graphs G and H,
independently reach completeness on exhaustion of the MDAC, the grouped iterations i.e., (a) first apply
MDAC independently to G and H, (b) thereafter apply MDAC between A(G) and A(H) or interchanging
the grouped iterations, yield the same result. This observations does not hold in general. Consider the two
3-regular graphs of order 6 (Figures 1 and 2).

v1

v2v3

v4

v5 v6

Figure 1. Graph G which up to isomorphism can be exhausted by adding degree affinity edges say, v2v6, v3v5.

It follows from Figures 1 and 2 that applying the MDAC to G and H independently yields graphs A(G)

with degree sequence (4, 4, 4, 4, 3, 3) and A(H) with degree sequence (5, 5, 5, 5, 5, 5). Hence, A(G) and A(H)

remain disjoint in A(G) ∪ A(H). The second approach, to first add degree affinity edges viuj, 1 ≤ i, j ≤ 6
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u1

u2u3

u4

u5 u6

Figure 2. Graph H reaches completeness in two iterations by adding the degree affinity edges say, (i) u1u4, u2u6,
u3u5 then, (ii) u1u3, u2u5, u4u6.

(external to both G and H) and then adding the degree affinity edges vivj and uiuj, i 6= j, 1 ≤ i, j ≤ 6 to G+6

and H+6 yields the maximum number of degree affinity edges.

2.1. Disjoint union of cycles

Recall that a cycle on n ≥ 3 vertices is a graph denoted by, Cn and V(Cn) = {vi : 1 ≤ i ≤ n},
E(Cn) = {vivi + 1 : 1 ≤ i ≤ n − 1} ∪ {vnv1}. The family of 2-regular graphs are all graphs such
that, each graph G consists of one or more (disconnected or disjoint union of) cycles. The numbers an,
n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . of 2-regular graphs on n vertices are given by 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, . . . , p(t) −
p(t− 1)− p(t− 2) + p(t− 3), . . . with p(t) the partition function, (see https://oeis.org/A008483).

The results for both even and odd cycles are provided by Theorem 1 and Corollary 1. Categories of
disconnected of 2-regular graphs (disjoint union of cycles) of order 3 ≤ n ≤ 10 will be discussed.

Clearly, for n = 3, 4, 5 there exists a unique 2-regular graph each i.e. C3, C4, C5. The other categories are;

(i) C3 ∪ C3,
(ii) C3 ∪ C4,

(iii) C3 ∪ C5 and C4 ∪ C4,
(iv) C3 ∪ C6, C4 ∪ C5 and C3 ∪ C3 ∪ C3 (or 3C3),
(v) C3 ∪ C7, C4 ∪ C6, C5 ∪ C5 (or 2C5) and 2C3 ∪ C4.

Theorem 3 read together with Theorem 1 leads to a proposition which requires no further proof.

Proposition 1. (a) For the disjoint union of two copies of an even cycle Cn, n ≥ 4 the MDAC exhausts after k =

2n− 3 iterations, η(Cn ∪ Cn)n,even = n(n− 3) and A(Cn ∪ Cn) ∼= K2n.
(b) For the disjoint union of two copies of an odd cycle Cn, n ≥ 3 the MDAC exhausts after k = 2n− 3 iterations,

η(Cn ∪ Cn)n,odd = 2n2 − 5n + 6.

Definition 1. For a graph G of order n and 1 ≤ t ≤ n, select X ⊆ V(G), |X| = t such that a minimum number
of vertices v ∈ X are adjacent. The set X is said to be an optimal near-independent selection.

For X ⊆ V(G) the subgraph induced by X is denoted by, 〈X〉. Definition 1 can be put differently i.e. select
X ⊆ V(G), |X| = t such that 〈X〉 has a minimum number of edges.

Proposition 2. (i) η(C3 ∪ C3) = 9.
(ii) η(C3 ∪ C4) = 10.

(iii) (a). η(C3 ∪ C5) = 11.

(b). η(C4 ∪ C4) = 20.

(iv) (a). η(C3 ∪ C6) = 11.

(b). η(C4 ∪ C5) = 21.

(c). η(C3 ∪ C3 ∪ C3) ≥ 19.

(v) (a). η(C3 ∪ C7) = 19.

(b). η(C4 ∪ C6) = 24.
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(c). η(C5 ∪ C5) = 31.

(d). η(2C3 ∪ C4) ≥ 21.

Proof. (i) Follows from Proposition 1.
(ii) Let C3 be on vertices v1, v2, v3 and C4 on vertices u1, u2, u3, u4. Without loss of generality add the external

degree affinity edges between v1, v2, v3 and u1, u2, u3 in 3 iterations. Now vertices u1, u2, u3 each, has
degree of 5. Add degree affinity edge u1u3 to exhaust the MDAC. Clearly, η(C3 ∪ C4) = 10.

(iii) (a). Let C3 be on vertices v1, v2, v3 and C5 on vertices u1, u2, u3, u4, u5. Note that if degree affinity edges
between v1, v2, v3 and u1, u2, u3 are added then u4, u5 remain adjacent. An optimal near-independent
selection will, without loss of generality be say, vertices u1, u2, u4. Therefore, in 1st-iteration add
the degree affinity edges u3u5, v1u1, v2u2, v3u4. During the 2nd- and 3rd-iteration reach completion
between v1, v2, v3 and u1, u2, u4. In the exhaustive 4th-iteration add either u1u4 or u2u4. Clearly,
η(C3 ∪ C5) = 11.

(b). Follows from Proposition 1.

(iv) (a). Let C3 be on vertices v1, v2, v3 and C6 on vertices u1, u2, u3, u4, u5, u6. Without loss of generality an
optimal near-independent selection of vertices in C6 will be say, u1, u3, u5. Hence, in three iterations
add the degree affinity edges by first adding , either u2u4 or u2u6 or u4u6 together with v1u1, v2u2,
v3u3. Thereafter complete the degree affinity edges between C3 and C6. Finally, add either u1u3 or
u1u5 or u3u5. Clearly, η(C3 ∪ C6) = 11.

(b). The result follows through similar reasoning in the proof of (ii).

(c). Let the vertices of three copies of C3 be labeled v1, v2, v3 and u1, u2, u3 and w1, w2, w3, respectively.
For the convenience of reference label the cycles, G1, G2, G3 respectively.

Case 1: Add all the degree affinity edges between any pair of C3 cycles. Since the MDAC is
exhausted, η(C3 ∪ C3 ∪ C3) ≥ 9.

Case 2: In the 1st-iteration consider pairs of cycles in the order, (G1, G2), (G2, G3), (G3, G1), (G1, G2)

and add the degree affinity edges say, v1u1, u2w2, w3v3, v2u3. In the 2nd-iteration consider pairs of
cycles in the order, (G2, G3), (G3, G1), (G1, G2) and add the degree affinity edges say, u1w2, w3v1,
v2u2, v3u3. In the 3rd-iteration consider pairs of cycles in the order, (G3, G1), (G1, G2) and add the
degree affinity edges say, w2v3, w3u3, v1u2, v2u1. In the 4th-iteration consider pairs of cycles in the
order, (G1, G2), (G2, G3), (G3, G1) and add the degree affinity edges say, v1u3, v3u1, u2w3, w2v2.
Finally to exhaust the MADC add degree affinity edges, v2w3, v1w2, v3u2. Since the methodology
has only been tested exhaustively and not proven to yield the maximum number of degree affinity
edges the best result is, η(C3 ∪ C3 ∪ C3) ≥ max{9, 19} = 19.

(v) (a). Case 1: Clearly since C3 is complete, η(C3 ∪ C7) ≥ 10 = η(C7).

Case 2: Let C3 be on vertices v1, v2, v3 and C7 on vertices u1, u2, u3, u4, u5, u6, u7. It follows easily that
if the MDAC is applied between C3 and vertices u1, u2, u3 then, η(C3 ∪ C7) ≥ 13.

Case 3: Apply the MDAC between C3 and vertices u1, u2, u4 as follows. Add degree affinity edges
v1u1, v2u2, v3u4 as well as say, u3u6, u5u7. In the 2nd-iteration add, v1u2, v2u4, v3u1 as well as say,
u3u5. In the 3rd-iteration add v1u4, v2u1, v3u2. Exhaust the MDAC in the 4th-iteration by adding say,
u1u4. Hence, η(C3 ∪ C7) ≥ 13.

Case 4: Apply the MDAC between C3 and vertices u1, u2, u5. Through similar reasoning as in Case
3 it follows that, η(C3 ∪ C7) ≥ 14.

Case 5: Without loss of generality an optimal near-independent selection of vertices in C7 will be say,
u1, u3, u5. In the 1st-iteration add the degree affinity edges, v1u1, v2u3, v3u5 and u2u7, u4u6. In
the 2nd-iteration ad the degree affinity edges v1u3, v3u1, v2u5, u2u6, u4u7. In the 3rd-iteration ad
the degree affinity edges v1u5, v2u1, v3u3, u2u4. In the 3rd-iteration ad the degree affinity edges
v1u2, v3u4, u1u5. Finally, add v1u4 and u2u5. Since all possibilities up to isomorphisms have been
considered the result is, η(C3 ∪ C7) = max{10, 13(repeated), 14, 19} = 19.

(b) Let C4 be on vertices v1, v2, v3, v4 and C6 on vertices u1, u2, u3, u4, u5, u6.

Case 1: If the MDAC is applied to C4 and C6 independently it follows that η(C4 ∪ C6) ≥ 11.
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Case 2: Let C4 be on vertices v1, v2, v3, v4 and C6 on vertices u1, u2, u3, u4, u5, u6. By applying the
MDAC between C4 and vertices u1, u2, u3, u4 it follows easily that exhaustion is reached between six
iterations. Hence, η(C4 ∪ C6) ≥ 21.

Case 3: By applying the MDAC between C4 and vertices u1, u2, u3, u5 it follows easily that
exhaustion is reached between six iterations. Note that in the 1st-iteration the degree affinity edge
u4u6 was added thus, η(C4 ∪ C6) ≥ 22.

Case 4: By applying the MDAC between C4 and vertices u1, u2, u4, u5 it follows easily that
exhaustion is reached between six iterations. Note that in the 1st-iteration the degree affinity edge
u3u6 was added thus, η(C4 ∪ C6) ≥ 23. Since all possibilities up to isomorphisms have been
considered the result is, η(C4 ∪ C6) = max{11, 21, 22, 23} = 24.

(c). Follows from Proposition 1.

(d). Through similar reasoning as that in (iv)(c) the result is, η(2C3 ∪ C4) ≥ 21.

Another approach to find the results (iv)(c) and (v)(a)-(d) is proposed. Consider (iv)(c). In the first
iteration add the degree affinity edges say, v1u1, u2w2, w3v3 and v2u3. Relabel the vertices as follows: v1 7 z1,
u1 7 z2, u3 7 z3, u2 7 z4, w2 7 z5, w1 7 z6, w3 7 z7, v3 7 z8, v2 7 z9. A chorded cycle as depicted in Figure 3 is obtained.

w1

w2

w3
w4

w5

w6

w7
w8

w9

Figure 3. Chorded cycle.

The avenue for researching chorded cycles could lead to an improved methodology.

2.2. Chorded cycles

A chorded cycle with ` chords is denoted by C∼`
n , 1 ≤ ` ≤ n(n−3)

2 . The observations from Figures 1 and 2
read together with Theorem 1 and Corollary 1 provide a proposition which requires no further proof.

Proposition 3. For a cycle Cn,

(a) η(C∼`
n ) ≤ n(n−3)

2 − ` if n is even.
(b) η(C∼`

n ) ≤ (n−2)(n−3)
2 − ` if n is odd.

Chorded cycles with ` independent chords, i.e., no pair of distinct chords share an end-vertex will be
denoted by C∼`(i)

n , 1 ≤ ` ≤ b n
2 c. A researcher, Dillon Lareau investigated a problem which is described as,

finding "the number of ways of dividing n labeled items into k unlabeled boxes as evenly as possible". In
the graph coloring context the Lareau problem can be stated as, finding "the number of ways of coloring n
labeled and isolated vertices (or the labeled vertices of the null graph, Nn) with k distinct colors as evenly as
possible". The aforesaid problem was investigated in the context of chromatic completion of graphs. For an
introduction to chromatic completion of a graph G, see [5–9]. In the aforesaid context the number of ways of
coloring was called the lucky number denoted by, L(n, k). The vertex set partitions which correspond to the
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"ways of coloring" are called lucky partitions. A closed formula was announce by Dillon Lareau (11 June 2019)
which is given by, L(n, k) = n!

A!B!(d n
k e!)A(b n

k c!)B , A = n(mod k), B = k− A, (see https://oeis.org/A308624). Let

the number of ways ` independent chords can be added to Cn be denoted by,
⊕

`(Cn).
Determining

⊕
`(Cn) presents difficulty because no computer algorithm is available to generate the

required partitions. To illustrate this difficulty consider finding all 2-chorded cycles of order 6. To begin,
first find the corresponding L(6, (6− 2)) = 6!

2!2!(2!)2(1!)2 = 45 lucky partitions.
The corresponding lucky partitions of V(N6) (null graph order 6) are;

{{v1, v2}, {v3, v4}, {v5}, {v6}},
{{v1, v2}, {v3, v5}, {v4}, {v6}},
{{v1, v2}, {v3}, {v4, v5}, {v6}},
{{v1, v2}, {v3, v6}, {v4}, {v5}},
{{v1, v2}, {v3}, {v4, v6}, {v5}},
{{v1, v2}, {v3}, {v4}, {v5, v6}},
{{v1, v3}, {v2, v4}, {v5}, {v6}},
{{v1, v3}, {v2, v5}, {v4}, {v6}},
{{v1, v3}, {v2}, {v4, v5}, {v6}},
{{v1, v3}, {v2, v6}, {v4}, {v5}},
{{v1, v3}, {v2}, {v4, v6}, {v5}},
{{v1, v3}, {v2}, {v4}, {v5, v6}},
{{v1, v4}, {v2, v3}, {v5}, {v6}},
{{v1, v5}, {v2, v3}, {v4}, {v6}},
{{v1}, {v2, v3}, {v4, v5}, {v6}},
{{v1, v6}, {v2, v3}, {v4}, {v5}},
{{v1}, {v2, v3}, {v4, v6}, {v5}},
{{v1}, {v2, v3}, {v4}, {v5, v6}},
{{v1, v4}, {v2, v5}, {v3}, {v6}},
{{v1, v4}, {v2}, {v3, v5}, {v6}},
{{v1, v4}, {v2, v6}, {v3}, {v5}},
{{v1, v4}, {v2}, {v3, v6}, {v5}},
{{v1, v4}, {v2}, {v3}, {v5, v6}},
{{v1, v5}, {v2, v4}, {v3}, {v6}},
{{v1}, {v2, v4}, {v3, v5}, {v6}},
{{v1, v6}, {v2, v4}, {v3}, {v5}},
{{v1}, {v2, v4}, {v3, v6}, {v5}},
{{v1}, {v2, v4}, {v3}, {v5, v6}},
{{v1, v5}, {v2}, {v3, v4}, {v6}},
{{v1}, {v2, v5}, {v3, v4}, {v6}},
{{v1, v6}, {v2}, {v3, v4}, {v5}},
{{v1}, {v2, v6}, {v3, v4}, {v5}},
{{v1}, {v2}, {v3, v4}, {v5, v6}},
{{v1, v5}, {v2, v6}, {v3}, {v4}},
{{v1, v5}, {v2}, {v3, v6}, {v4}},
{{v1, v5}, {v2}, {v3}, {v4, v6}},
{{v1, v6}, {v2, v5}, {v3}, {v4}},
{{v1}, {v2, v5}, {v3, v6}, {v4}},
{{v1}, {v2, v5}, {v3}, {v4, v6}},
{{v1, v6}, {v2}, {v3, v5}, {v4}},
{{v1}, {v2, v6}, {v3, v5}, {v4}},
{{v1}, {v2}, {v3, v5}, {v4, v6}},
{{v1, v6}, {v2}, {v3}, {v4, v5}},
{{v1}, {v2, v6}, {v3}, {v4, v5}},
{{v1}, {v2}, {v3, v6}, {v4, v5}}.
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Finally, eliminate all lucky partitions which have some 2-element subset which is an edge of the cycle C6.
This yields,

{{v1, v3}, {v2, v4}, {v5}, {v6}},
{{v1, v3}, {v2, v5}, {v4}, {v6}},
{{v1, v3}, {v2, v6}, {v4}, {v5}},
{{v1, v3}, {v2}, {v4, v6}, {v5}},
{{v1, v4}, {v2, v5}, {v3}, {v6}},
{{v1, v4}, {v2}, {v3, v5}, {v6}},
{{v1, v4}, {v2, v6}, {v3}, {v5}},
{{v1, v4}, {v2}, {v3, v6}, {v5}},
{{v1, v5}, {v2, v4}, {v3}, {v6}},
{{v1}, {v2, v4}, {v3, v5}, {v6}},
{{v1}, {v2, v4}, {v3, v6}, {v5}},
{{v1, v5}, {v2, v6}, {v3}, {v4}},
{{v1, v5}, {v2}, {v3, v6}, {v4}},
{{v1, v5}, {v2}, {v3}, {v4, v6}},
{{v1}, {v2, v5}, {v3, v6}, {v4}},
{{v1}, {v2, v5}, {v3}, {v4, v6}},
{{v1}, {v2, v6}, {v3, v5}, {v4}},
{{v1}, {v2}, {v3, v5}, {v4, v6}}.

Clearly,
⊕

2(C6) = 18.

Corollary 2. For a cycle Cn, n ≥ 3, we have the inequality,
⊕

`(Cn) < L(n, n− `).

Proof. Since some lucky partitions have at least one 2-element subset which is an edge of the cycle Cn, the
result holds.

Let a family of non-isomorphic independent `-chorded cycles be denoted by, C∼`(i)
n . For the example

above and without loss of generality it follows that,
C
∼2(i)
6 = {{{v1, v3}, {v2, v4}, {v5}, {v6}}, {{v1, v3}, {v2, v5}, {v4}, {v6}}, {{v1, v3}, {v2}, {v4, v6}, {v5}},

{{v1, v4}, {v2, v5}, {v3}, {v6}}}.
We now open the avenue for researching the degree affinity properties of Cn ∪ Cm, m > n ≥ 3. If all

external degree affinity edges between Cn and Cm as well as the required internal degree affinity edges to Cm

is added during the 1st-iteration of the MDAC, a Hamiltonian graph is obtained. This Hamiltonian graph is a
chorded cycle, C∼`(i)

n+m , ` = n + bm−n
2 c ≥ 3. The Hamilton cycle is not unique because the choice of connecting

pairs of vertices between Cn and Cm is not unique. By exhausting the ways in which the pairs of vertices can be
connected and by exhausting the Hamilton cycles within each chorded cycle, a family C

∼`(i)
n+m can be generated.

Therefore, from Definition 2.1 in [4] it follows that, for m ≥ n, η(Cn ∪ Cm) ≤ (n + bm−n
2 c) + max{η(C∼`(i)

n+m ) :

C∼`(i)
n+m ∈ C

∼`(i)
n+m , ` = n + bm−n

2 c}.

Example 1. Consider C3 ∪ C3. Let the cycles be on vertices v1, v2, v3 and u1u2, u3 respectively. Without loss of
generality add the three external degree affinity edges, v1u1, v2u2, v3u3. Relabel the vertices as follows: v1 7 z1,
v3 7 z2, v2 7 z3, u2 7 z4, u3 7 z5, u1 7 z6.

It implies that η(C3 ∪C3) ≤ 3+max{2, 6} = 9. Note that since the C
′s
3 are complete, a unique independent

chorded cycle C∼3(i)
6 is obtained which yields equality. Hence, η(C3 ∪ C3) = 9.

3. Conclusion

Besides doing "mathematics for the sake of mathematics", motivation related to applications of the notion
of degree affinity has been stated in [4]. Current research into an application related to chemical affinity
between atoms or molecular affinity in molecular structures is underway. It is hoped to report on results
soon.
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z1

z2z3

z4

z5 z6

z1

z2z3

z4

z5 z6

Figure 4. C∼3(i)
6 has two distinct C∼3(i)

6 .

Investigating the new parameter η(G) for the disjoint union of cycles poses numerous challenges. It is
the considered view of the author that for labeled graphs, the development of a computer generator of lucky
partitions followed by the reduction of the partitions to the permissible partitions is key to furthering this
research meaningfully. If a methodology can be developed to generate a family of non-isomorphic `-chorded
cycles it will be worthy to further results.

Finding a closed formula for
⊕

`(Cn), n ≥ 3 is worthy of endeavour. Finding improvement on the
inequality of Corollary 2 remains open.
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