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1. Preliminaries

L et G = (V(G), E(G)) be a finite simple connected graph with n = |V(G)| vertices and m = |E(G)| edges.
The number of edges in G that are incident to a vertex v ∈ V(G) is called its degree and denoted by

dG(v). A sequence of positive integers π = (d1, d2, · · · , dn) is called the degree sequence of G if di = dG(vi),
i = 1, 2, · · · , n, holds for any vi ∈ V(G). In particular, if the vertex degrees is non-decreasing, we use π =

(d1 ≤ d2 ≤ · · · ≤ dn) to denote the degree sequence for simplicity. We denote by Kn and Kn the complete
graph with n vertices and its complement graph, respectively.

A cycle (resp. path) passing through each vertex of a graph is said to be a Hamilton cycle (resp. Hamilton
path). We call the graph is Hamiltonian (resp. traceable) if there exists a Hamilton cycle (resp. Hamilton
path) in it. For some integer k, a connected graph G is said to be k-edge-hamiltonian if any collection
of vertex-disjoint paths with at most k edges altogether belong to a hamiltonian cycle in G. A graph is
k-path-coverable if its vertex set can be covered by k or fewer vertex-disjoint paths, and we call a graph is
Hamilton-connected if every two vertices in G are connected by a Hamiltonian path. For a graph G, a subset I
of V(G) is said to be an independent set of G if the induced subgraph G[I] is a graph with |I| isolated vertices.
The independence number, denoted by α(G), of G is the number of vertices in the largest independent set of
G, and we call a graph is k−-independent if its independent number does not exceed to a positive real number
k. In what follows, we always omit the subscript G from the notation if there is no confuse from the context.
For standard graph-theoretic notation and terminology the reader is referred to [1].

2. Motivation

In theoretical chemistry molecular structure descriptor, also called topological indices, are used to
characterize the properties of the corresponding graph. Up to now, a series of topological indices, such
as Wiener index [2] and Harary index [3,4], have been introduced and found a large amount of useful
applications. Other nice related results and information could be found in [5–7] and therein.
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The inverse degree, denoted by ID(G), of a graph G was defined as the sum of the inverses of the degrees
of the vertices, formally

ID(G) = ∑
u∈V

1
dG(u)

,

which maybe firstly be investigated in the conjectures of computer program [8]. It was stated that Zhang et
al., [9] gave out a counterexample of the Graffiti’s conjecture, and obtained the best bound upper and lower
bounds on ID(T) + β(T) for any tree T, where β(T) denotes the matching number of T. Two years later, Hu
et al., [10] characterized the extremal graphs with respect to the inverse degree among all connected graphs of
order n and with m edges. In 2008, Dankelmann et al., [11] proved that, if G is connected and of order n, then
the diameter of G is less than (3ID(G) + 2 + o(1)) logn

loglogn which improves a bound by Erdös et al., [12]. About
one year after, Dankelmann et al., [13] found a relation between the inverse degree and edge-connectivity of
graph. In [14], Mukwembi presented a better bound on diameter by the inverse degree than those mentioned
in the previous two papers. It is worth mentioning that Li et al., [15] improved the bound on diameter in terms
of the inverse degree by Dankelmann et al., [11] for trees and unicyclic graphs. In 2013, Chen and Fujita [16]
obtained a nice relation between diameter and the inverse degree of a graph, which settled a conjecture in [14].
In 2016, Xu and co-author determined some upper and lower bounds on the inverse degree for a connected
graph in terms of other graph parameters, such as chromatic number, clique number, connectivity, number of
cut edges and matching number [17]. We encourage the interested reader to consult [18–21] and the references
therein for more details.

The problem of determining whether a graph keeps certain reasonable property is often difficult
and meaningful in graph theory. It is reported in [22] that determining whether a graph is traceable or
Hamiltonian is NP-complete. From then on, exploring such sufficient conditions for graphs attracts a vast
number of mathematicians. For example, the authors in [23] studied the traceability of graphs by using
a kind of distance-based topological index, the Harary index. In the same year, similar problem was also
considered in [24] and a new sufficient condition was found for a graph to be traceable based on the Wiener
index. Subsequently, these results mentioned previously were generalized by means of other techniques, we
encourage readers to consult [25,26] for more details and information. To the best of our knowledge, there
are absolutely few such conditions in terms of the well-known degree-based and distance-based topological
indices.

Motivated by the results in [27], in the subsequent sections we attempt to explore sufficient conditions
in terms of the inverse degree for graphs to be k-path-coverable, k-edge-hamiltonian, Hamilton-connected,
traceable and k−-independent, respectively.

3. k-path-coverable graphs

In this section, a sufficient condition for a graph to be k-path-coverable, graphs is presented. To do this, we
need the following well-known theorem, which could be found in the book of Bondy and Lesniak, respectively.

Lemma 1. ([28,29]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a degree sequence, and also let k ≥ 1. If

di+k ≤ i dn−i ≥ n− i− k for 1 ≤ i <
n− k

2
,

then π enforces k-path-coverable.

Now we shall state the main result:

Theorem 1. Let G be a connected graph of order n ≥ 8 and k ≥ 1. If ID(G) < Q1(n, k), where

Q1(n, k) =


−k2−3n2+2n+1
2(n−1)(k−n+1) if n− k− 1 is even;

−k3+(n−2)k2+(−3n2+4n)k+3n3−2n2−16n+16
2(n−1)(k2−2kn+2k+n2−2n) if n− k− 1 is odd,
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then G is k-path-coverable. Moreover, ID(G) = Q1(n, k) if and only if G ∼= K n−k−1
2

+ (K1 ∪ n+k−1
2 ) if n− k − 1 is

even; and G ∼= K n−k−2
2

+ (K2 ∪ K n+k−2
2

) if n− k− 1 is odd.

Proof. Suppose that G is not k-path-coverable. In view of Lemma 1, there exists an integer i such that di+k ≤ i
and dn−i ≤ n− i− k− 1 for 1 ≤ i ≤ n−k−1

2 . Hence, we have

ID(G) =
n

∑
i=1

1
di

≥ i + k
i

+
n− 2i− k

n− i− k− 1
+

i
n− 1

.

For simplicity, we define the following function on [1, n−k−1
2 ]:

A1(x) =
x + k

x
+

n− 2x− k
n− x− k− 1

+
x

n− 1
.

It is routine to check that the derivative of A1(x) equals to

A′1(x) =
r1(x)

x2(n− 1)(x + k− n + 1)2 ,

where

r1(x) = x4 + (2k− 2n + 2)x3 + (k2 + (2− 2n)k + n− 1)x2 − k(n− 1)(k− n + 1)(2x + k− n + 1).

Similarly, the second derivative of A1”(x) is

A1”(x) =
η(x)

x3(x + k− n + 1)3 ,

where

η(x) = (2n− 4)x3 + (6k2 + (−6n + 6)k)x2 + (6k3 + (−12n + 12)k2 + (6n2 − 12n + 6)k)x

+ 2k4 + (−6n− 6)k3 + (6n2 − 12n + 6)k2 + (−2n3 + 6n2 − 6n + 2)k.

By simple calculations, we have

η′′(x) = (12n− 24)x + 12k2 + (12− 12n)k,

and its unique root η0 = −k2+(n−1)k
n−2 satisfies the following property:

Fact 1. 1 < η0 ≤ n−k−1
2 if k ∈ [1, n−2

2 ] and η0 ≥ n−k−1
2 if k ∈ [ n−2

2 , n− 3].
In fact, it can be easily seen that η0 > 1. It remains to prove the last assertion. Let g(k) = 2(n− 2)(η0 −

n−k−1
2 ) = −2k2 + 3kn − 4k − n2 + 3n − 2, which has an root, n−2

2 , in the interval [1, n − 3]. Thus we get
g(k) ≤ n−k−1

2 if k ∈ [1, n−2
2 ] and g(k) ≥ n−k−1

2 if k ∈ [ n−2
2 , n− 3], implying the correction of Fact 1.

It is routine to check that
η(η0) =

2k(k−n+1)3

(n−2)2 (2k2 + (−3n + 6)k + n2 − 4n + 4)

η( n−k−1
2 ) = (k−n+1)3(2k−n+2)

4 ,

and we also can obtain two auxiliary properties for the function η(x) :
Fact 2. η(η0) ≤ 0 if k ∈ [1, n−2

2 ] and η(η0) ≥ 0 if k ∈ [ n−2
2 , n− 3].

In fact, let g1(k) = 2k2 + (−3n + 6)k + n2 − 4n + 4. It is routine to check that g1(k) has an root, n−2
2 , in the

interval [1, n− 3], implying g1(k) ≤ 0 if k ∈ [1, n−2
2 ] and g1(k) ≥ 0 if k ∈ [ n−2

2 , n− 3]. This completes the proof
of Fact 2.
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Fact 3. η( n−k−1
2 ) ≥ 0 if k ∈ [1, n−2

2 ] and η( n−k−1
2 ) ≤ 0 if k ∈ [ n−2

2 , n− 3].
In fact, we use g2(k) to denote the right-side of η( n−k−1

2 ). It is routine to check that g2(k) has an root, n−2
2 ,

in the interval [1, n− 3]. As desired.
In what follows, we will confirm that A′1(x) < 0 in the whole interval [1, n−k−1

2 ]. It is sufficient to show
the following three claims.
Claim 1. A′1(x) < 0 for k ∈ [1, n−2

2 ] and x ∈ [1, η0] .
Direct calculations that

A′1(η0) =
r2(k)

k(n− 1)(k− n + 1)2(k− n + 2)2 ,

where

r2(k) = k5 + (−4n + 6)k4 + (6n2 − 18n + 13)k3 + (−4n3 + 18n2 − 26n + 12)k2

+ (2n4 − 13n3 + 31n2 − 32n + 12)k− n5 + 9n4 − 32n3 + 56n2 − 48n + 16.

Note that the denominator of A′1(η0) is non-negative, and the third derivative r(3)2 (k) = 60k2 +

(−96n + 144)k + 36n2 − 108n + 78 is a convex function in the interval [1, n−2
2 ]. Hence, r(3)2 (k) ≥

min{r(3)2 (1), r(3)2 ( n−2
2 )} = min{36n2 − 204n + 282, 3n2 − 6} > 0, implying that r′2(k) is a convex function.

Similarly, we have r′2(k) ≥ min{r′2(1), r′2(
n−2

2 )} = min{2n4− 21n3 + 85n2− 154n + 104, (n−2)2(13n2−44n+32)
16 } >

0, which shows that r2(k) is monotonously increasing in the accordingly interval. It is routine to check that

r2(k) ≤ r2(
n−2

2 ) = −(n−2)3(15n2−48n+32)
32 < 0, as desired we prove that A′1(η0) < 0.

It follows from Fact 1 that 1 ≤ η0 ≤ n−k−1
2 , implying that η′′(x) = (12n− 24)x + 12k2 + (12− 12n)k ≤ 0.

Hence, η′(x) is a decreasing function in the interval [1, η0]. Consequently,

η′(x) ≥ η′(η0) =
−6k(k− n + 1)2(k− n + 2)

n− 2
> 0.

Hence, η(x) is monotonously increasing in the accordingly interval.
To accomplish the proof of Claim 1, it remains to prove that A′′1 (x) > 0, which is equivalent to that fact

η(x) < 0. It follows from Fact 2, together with η(x) is increasing, that η(x) ≤ η(η0) < 0. This implies that
A′1(x) is an increasing function in the interval [1, η0]. It then yields that A′1(x) ≤ A′1(η0) < 0, which completes
the proof of Claim 1.

Hence, ID(G) ≥ A1(x) ≥ A1(η0).
Claim 2. A′1(x) < 0 for k ∈ [1, n−2

2 ] and x ∈ [η0, n−k−1
2 ] .

We begin with such an optimization problem:

max A′1(x, k, n)

s.t. η0 ≤ x ≤ n− k− 1
2

1 ≤ k ≤ n− 2
2

n ≥ 8.

Throughout this paper, we always assume that the order n of the graph does not exceed 1010. It follows
that the global optimal solution of A′1(x, k, n) is x = 2, k = 1, n = 8 through Lingo software after iterating 209
times, and the corresponding optimal value is −0.4196429. This implies that A′1(x) < 0.

It yields from Claim 2 thatA1(x) is decreasing in the interval [η0, n−k−1
2 ]. Therefore, ID(G) ≥ A1(

n−k−1
2 ).

Claim 3. A′1(x) < 0 for k ∈ [ n−2
2 , n− 3] and x ∈ [1, n−k−1

2 ].
It directly follows from Fact 1 that η′′(x) ≤ 0, which implies that η′(x) is a decreasing function in the

interval x ∈ [1, n−k−1
2 ]. Hence, η′(x) ≥ η′( n−k−1

2 ) = 3(n−2)(k−n+1)2

2 > 0, implying that η(x) is monotonously
increasing in the accordingly interval. It follows from Fact 3 that η(x) ≤ η( n−k−1

2 ) ≤ 0, and therefore we have
A1”(x) > 0. Hence, A′1(x) is an increasing function in [1, n−k−1

2 ].



Open J. Discret. Appl. Math. 2020, 3(3), 66-76 70

Direct calculations show that

A′1(
n− k− 1

2
) =

r3(k)
(n− 1)(k− n + 1)2 ,

where r3(k) = k2 + (2 − 2n)k − 3n2 + 10n − 7. It is obvious to find that r3(k) is a convex function in the
interval [ n−2

2 , n − 3]. Note that r3(
n−2

2 ) = − 15n2

4 + 12n − 8 < 0 and r3(k) = −4n2 + 12n − 4 < 0, we get
A′1(x) ≤ A′1(

n−k−1
2 ) < 0. Thus, we have ID(G) ≥ A1(x) ≥ A1(

n−k−1
2 ).

Combining Claims 1, 2 and 3, we get A1(x) is decreasing in the whole interval [1, n−k−1
2 ], which achieves

its minimum value at the right end-point of this interval.
Recall that x is an integer, we need consider the following two cases:

Case 1. n− k− 1 is even.
It immediately yields that A1(x) ≥ A1(

n−k−1
2 ), and therefrore

ID(G) ≥ −k2 − 3n2 + 2n + 1
2(n− 1)(k− n + 1)

.
= Q̂1(n, k),

contradicting the hypothesis. Hence, the conclusion follows.
Furthermore, the condition in Theorem 1 cannot be dropped. If G ∼= K n−k−1

2
+ (K1 ∪ K n+k−1

2
), then direct

computations yields that ID(G) = Q̂1(n, k). Conversely, let ID(G) = Q̂1(n, k), then all inequalities in the
proof should be equalities. Hence, i = n−k−1

2 and therefore d1 = · · · = d n+k−1
2

= n−k−1
2 , d n+k+1

2
= n−k−1

2 and

d n+k+3
2

= · · · = dn = n− 1. This implies that G ∼= K n−k−1
2

+ (K1 ∪ K n+k−1
2

).
Case 2. n− k− 1 is odd.

According to previous analysis, we have A1(x) ≥ A1(
n−k−2

2 ). It follows by simple computations that

ID(G) ≥ −k3 + (n− 2)k2 + (−3n2 + 4n)k + 3n3 − 2n2 − 16n + 16
2(n− 1)(k2 − 2kn + 2k + n2 − 2n)

.
= Q̃1(n, k),

again a contradiction, and the conclusion follows.
Furthermore, the condition in Theorem 1 cannot be dropped. If G ∼= K n−k−2

2
+ (K2 ∪ K n+k−2

2
), then direct

computations yields that ID(G) = Q̃1(n, k). Conversely, let ID(G) = Q̃1(n, k), then all inequalities in the
proof should be equalities. Hence, i = n−k−2

2 and therefore d1 = · · · = d n+k−2
2

= n−k−2
2 , d n+k

2
= d n+k+2

2
= n−k

2

and d n+k+4
2

= · · · = dn = n− 1. This implies that G ∼= K n−k−2
2

+ (K2 ∪ K n+k−2
2

).

4. k-edge-hamiltonian graphs

We begin by presenting an elementary result for k-edge-hamiltonian graphs.

Lemma 2. ([30]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a degree sequence with 0 ≤ k ≤ n− 3. If

di−k ≤ i dn−i ≥ n− i + k for k + 1 ≤ i <
n + k

2
,

then π enforces k-edge-hamiltonian.

Let k0, k1, k2 be three non-negative real numbers in terms of n:

k0 =
−n2 + n +

√
n(n3 + 2n2 − 15n + 16)

2n

k1 =
n2 − 4n + 2−

√
n4 − 12n3 + 32n2 − 24n + 4

2n

k2 =
n2 − 4n + 2 +

√
n4 − 12n3 + 32n2 − 24n + 4

2n
.

The main result is the following:
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Theorem 2. Let G be a connected graph of order n ≥ 9 and 0 ≤ k ≤ n− 3. If ID(G) < Q2(n, k) , where

Q2(n, k) =



−k2+(n2−2n−1)k+2n2−5n+2
(k+1)(n2−3n+2) if k ∈ [k1, k2], n + k− 1 = 2p

−k2+(n2−2n−1)k+2n2−5n+2
(k+1)(n2−3n+2) if k ∈ [k0, n− 4], n + k− 1 = 2p + 1

k3+(n−2)k2+(3n2−4n)k+3n3−2n2−16n+16
2(n−1)(k2+2kn−2k+n2−2n) if k ∈ [0, k0], n + k− 1 = 2p + 1

k2+3n2−2n−1
2(n−1)(k+n−1) if k ∈ [0, k1] ∪ [k2, n− 3], n + k− 1 = 2p,

then G is k-edge-hamiltonian. Moreover, ID(G) = Q2(n, k) if and only if G ∼= Kk+1 + (K1 ∪ Kn−k−2) if k ∈ [k1, k2]

and n + k− 1 is even or k ∈ [k0, n− 4] and n + k− 1 is odd; G ∼= K n+k−2
2

+ (K2 ∪ K n−k−2
2

) if k ∈ [0, k0] and n + k− 1

is odd; and G ∼= K n+k−1
2

+ K n−k+1
2

if k ∈ [0, k1] ∪ [k2, n− 3] and n + k− 1 is even.

Proof. Suppose that G is not k-edge-hamiltonian. By Lemma 2, we know that there exists integer i such that
di−k ≤ i and dn−i ≤ n− i + k− 1 for k + 1 ≤ i ≤ n+k−1

2 . Then we have

ID(G) =
n

∑
i=1

1
di

≥ i− k
i

+
n− 2i + k

n− i + k− 1
+

i
n− 1

.

For simplicity, we define the following function on [k + 1, n+k−1
2 ]:

A2(x) =
x− k

x
+

n− 2x + k
n− x + k− 1

+
x

n− 1
,

and the corresponding second derivative is

A2”(x) =
ζ(x)

x3(x− k− n + 1)3 ,

where

ζ(x) = (2n− 4)x3 + 6k(k + n− 1)x2 − 6k(k + n− 1)2x + 2k(k + n− 1)3.

Let z = k + n − 1, then ζ(x) = (2n − 4)x3 + 2kz(3x2 − 3zx + z2), and consequently we have ζ(x) ≥
(2n − 4)x3 + 2kz(2

√
3 − 3)xz > 0. Hence, A2(x) is a concave function, since x3(x − k − n + 1)3 < 0 for

[k + 1, n+k−1
2 ].

To accomplish the proof, in what follows we need consider whether n + k− 1 is odd or even.
Case 1. n + k− 1 is odd.

In this case, it is not difficult to find that k + 1 ≤ x ≤ n+k−2
2 and 0 ≤ k ≤ n − 4. Hence, A2(x) ≥

min{A2(k + 1),A2(
n+k−2

2 )}. Direct calculations yields that
A2(k + 1) = −k2+(n2−2n−1)k+2n2−5n+2

(k+1)(n2−3n+2)

A2(
n+k−2

2 ) = k3+(n−2)k2+(3n2−4n)k+3n3−2n2−16n+16
2(n−1)(k2+2kn−2k+n2−2n) ,

and consequently we get

A2(k + 1)−A2

(
n + k− 2

2

)
=

σ(k)
2(k + 1)(n2 − 3n + 2)(k2 + 2kn− 2k + n2 − 2n)

,
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where

σ(k) =− nk4 + (n2 − 5n)k3 + (n3 − n2 − 6n + 4)k2

+(−n4 + 5n3 − 24n + 24)k + n4 − 10n3 + 36n2 − 56n + 32.

It is routine to check that σ(k) has two distinct roots in the interval [0, n− 4], say k0 and k′0 respectively.
Formally 

k0 =
−n2+n+

√
n(n3+2n2−15n+16)

2n

k′0 = n− 4.

In the following, we shall confirm that 0 < k0 < n− 5. In fact, the left-side of the inequality always holds
under our initial conditions. It is sufficient to verify the last part. Simple calculations show that

2n(k0 − (n− 5)) = −3n2 + 11n +
√

n4 + 2n3 − 15n2 + 16n,

which is non-positive since
(√

n4 + 2n3 − 15n2 + 16n
)2
− (3n2 − 11n)2 = −8n4 + 68n3 − 136n2 + 16n < 0, as

desired.
It then follows from direct calculations that

σ(0) = n4 − 10n3 + 36n2 − 56n + 32 > 0

σ(n− 5) = −6n3 + 51n2 − 102n + 12 < 0.

Applying Rolle’s Theorem for the function σ(k), we obtain that σ(k) ≥ 0 if k ∈ [0, k0], and σ(k) ≤ 0 if
k ∈ [k0, n− 4].

To continue to the proof, we need consider the following possibilities.
Case 1.1. k ∈ [0, k0].

Considering that σ(k) ≥ 0 and applying the hypothesis, we obtain A2

(
n+k−2

2

)
≤ A2(k + 1). It

immediately yields that

ID(G) ≥ A2

(
n + k− 2

2

)
=

k3 + (n− 2)k2 + (3n2 − 4n)k + 3n3 − 2n2 − 16n + 16
2(n− 1)(k2 + 2kn− 2k + n2 − 2n)

.
= Q̃2(n, k).

Thus we obtain a contradiction, completing the proof.
Furthermore, the corresponding condition in Theorem 2 cannot be dropped. If G ∼= K n+k−2

2
+ (K2 ∪

K n−k−2
2

), then directly computations yields that ID(G) = Q̃2(n, k). Conversely, let ID(G) = Q̃2(n, k), then all

inequalities in the proof should be equalities. Hence, i = n+k−2
2 and therefore d1 = · · · = d n−k−2

2
= n+k−2

2 ,

d n−k
2

= d n−k+2
2

= n+k
2 and d n−k+4

2
= · · · = dn = n− 1. This implies that G ∼= K n+k−2

2
+ (K2 ∪ K n−k−2

2
).

Case 1.2. k ∈ [k0, n− 4].
Note that σ(k) ≤ 0, which implies that A2

(
n+k−2

2

)
≥ A2(k + 1). It immediately yields that

ID(G) ≥ A2(k + 1)

=
−k2 + (n2 − 2n− 1)k + 2n2 − 5n + 2

(k + 1)(n2 − 3n + 2)
.
= Q̂2(n, k),

again a contradiction. Hence, G is k-edge-hamiltonian.
Furthermore, the corresponding condition in Theorem 2 cannot be dropped. If G ∼= Kk+1 +(K1 ∪Kn−k−2),

then directly computations yields that ID(G) = Q̂2(n, k). Conversely, let ID(G) = Q̂2(n, k), then all
inequalities in the proof should be equalities. Hence, i = k + 1 and therefore d1 = k + 1, d2 = · · · = dn−k−1 =

n− 2 and dn−k = · · · = dn = n− 1. This implies that G ∼= Kk+1 + (K1 ∪ Kn−k−2).
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Case 2. n + k− 1 is even.
In this case, it is routine to check that 1 ≤ x ≤ n+k−1

2 and k ∈ [0, n − 3]. Hence, A2(x) ≥
min{A2(1),A2(

n+k−1
2 )}. Direct calculations yields that

A2

(
n + k− 1

2

)
=

k2 + 3n2 − 2n− 1
2(n− 1)(k + n− 1)

,

and consequently we have

A2(k + 1)−A2

(
n + k− 1

2

)
=

ς(k)
2(k + 1)(k + n− 1)(n2 − 3n + 2)

,

where ς(k) = −nk3 + (2n2 − 7n + 2)k2 + (−n3 + 6n2 − 11n + 4)k + n3 − 6n2 + 11n− 6.
It is routine to check that ς(k) has three distinct roots, says k1, k2 and k3, in the interval [0, n− 3]. Formally

k1 = n2−4n+2−∆
2n

k2 = n2−4n+2+∆
2n

k3 = n− 3,

where ∆ =
√

n4 − 12n3 + 32n2 − 24n + 4. It is not difficult to verify that 0 < k1 < k2 < n− 4, and
ς(0) = n3 − 6n2 + 11n− 6 > 0

ς
(

k1+k2
2

)
= −n6+14n5−54n4+64n3+12n2−40n+8

8n2 < 0

ς(n− 4) = n2 − 5n + 10 > 0.

Again applying Rolle’s Theorem for the function ς(k), we obtain that ς(k) ≥ 0 if k ∈ [0, k1] ∪ [k2, n− 3],
and ς(k) ≤ 0 if k ∈ [k1, k2].

To continue to the proof, we need consider the following possibilities.
Case 2.1. k ∈ [0, k1] ∪ [k2, n− 3].

Recall that ς(k) ≥ 0, then we have A2(k + 1)−A2

(
n+k−1

2

)
≥ 0. It yields that

ID(G) ≥ A2

(
n + k− 1

2

)
=

k2 + 3n2 − 2n− 1
2(n− 1)(k + n− 1)

.
= ̂̂Q2(n, k),

which contradicts with our assumption. Hence, G is k-edge-hamiltonian.
Furthermore, the corresponding condition in Theorem 2 cannot be dropped. If G ∼= K n+k−1

2
+ K n−k+1

2
, then

direct computations yields that ID(G) = ̂̂Q2(n, k). Conversely, let ID(G) = ̂̂Q2(n, k), then all inequalities in
the proof should be equalities. Hence, i = n+k−1

2 and therefore d1 = · · · = d n−k−1
2

= n+k−1
2 , d n−k+1

2
= n+k−1

2

and d n−k+3
2

= · · · = dn = n− 1. This implies that G ∼= K n+k−1
2

+ K n−k+1
2

.

Case 2.2. k ∈ [k1, k2].
Recall that ς(k) ≤ 0, then we have A2(k + 1)−A2

(
n+k−1

2

)
≤ 0. It immediately yields that

ID(G) ≥ A2(k + 1) =
−k2 + (n2 − 2n− 1)k + 2n2 − 5n + 2

(k + 1)(n2 − 3n + 2)
.
= ˜̃Q2(n, k),

contradicting the hypothesis. The assertion is proved.
Furthermore, the corresponding condition in Theorem 2 cannot be dropped. If Kk+1 + (K1 ∪ Kn−k−2),

then simple calculations yield that ID(G) = ˜̃Q2(n, k). Conversely, let ID(G) = ˜̃Q2(n, k), then all inequalities
in the proof should be equalities. Hence, i = k + 1 and therefore d1 = k + 1, d2 = · · · = dn−k−1 = n− 2 and
dn−k = · · · = dn = n− 1. This implies that Kk+1 + (K1 ∪ Kn−k−2).
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5. Hamilton-connected graphs

Lemma 3. ([31]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a degree sequence with n ≥ 3. If

dk−1 ≤ k dn−k ≥ n− k + 1 for 2 ≤ k ≤ n
2

,

then π enforces Hamilton-connected.

Now we shall state the main result:

Theorem 3. Let G be a connected graph of order n. If

ID(G) <
k3 + (2n− 3)k2 + (2− 2n2)k + n2 − n

k(k− n)(n− 1)
.
= Q3(n, k),

then G is Hamilton-connected. Moreover, ID(G) = Q3(n, k) if and only if G ∼= Kk + (Kk−1 ∪ Kn−2k+1).

Proof. Suppose that G is not Hamilton-connected. Accordingly to Lemma 3, there must exist an integer k such
that dk−1 ≤ k and dn−k ≤ n− k for 2 ≤ k ≤ n

2 . It then follows that

ID(G) ≥ k− 1
k

+
n− 2k + 1

n− k
+

k
n− 1

=
k3 + (2n− 3)k2 + (2− 2n2)k + n2 − n

k(k− n)(n− 1)
,

which contradicts to our initial assumption. Hence the result follows.
Furthermore, the condition in Theorem 3 cannot be dropped. If G ∼= Kk + (Kk−1 ∪ Kn−2k+1), then one can

easily see that ID(G) = Q3(n, k). Conversely, let ID(G) = Q̂3(n, k), then all inequalities in the proof should
be equalities. Therefore, d1 = · · · = dk−1 = k, dk = · · · = dn−k = n− k and dn−k+1 = · · · = dn = n− 1. Hence,
G ∼= Kk + (Kk−1 ∪ Kn−2k+1).

6. Traceable graphs

Lemma 4. ([1]) Let G be a nontrivial graph of order n ≥ 4, with degree sequence π = (d1 ≤ d2 ≤ · · · ≤ dn). Suppose
that there is no integer k < n+1

2 such that dk ≤ k− 1 and dn−k+1 ≤ n− k− 1. Then G is traceable.

Now we shall state the main result:

Theorem 4. Let G be a connected graph of order n. If

ID(G) <
k3 + (2n− 4)k2 + (−2n2 + 2n + 1)k + n2 − n

(k− 1)(n− 1)(k− n + 1)
.
= Q4(n, k),

then G is traceable. Moreover, ID(G) = Q4(n, k) if and only if G ∼= Kk−1 + (Kk ∪ Kn−2k+1).

Proof. Suppose that G is not traceable. Then it follows from Lemma 4 that dk ≤ k− 1 and dn−k+1 ≤ n− k− 1.
Hence, from the definition of the inverse degree, we have

ID(G) ≥ k
k− 1

+
n− 2k + 1
n− k− 1

+
k− 1
n− 1

=
k3 + (2n− 4)k2 + (−2n2 + 2n + 1)k + n2 − n

(k− 1)(n− 1)(k− n + 1)

which is a contradiction. This completes the proof.
Furthermore, the condition in Theorem 4 cannot be dropped. If G ∼= Kk−1 + (Kk ∪ Kn−2k+1), then one

can easily see that ID(G) = Q4(n, k). Conversely, let ID(G) = Q̂4(n, k), then all inequalities in the proof
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should be equalities. Hence, therefore d1 = · · · = dk = k − 1, dk+1 = · · · = dn−k+1 = n − k − 1 and
dn−k+2 = · · · = dn = n− 1. Hence, G ∼= Kk−1 + (Kk ∪ Kn−2k+1).

7. k−-independent graphs

More recently, An et al., [27] considered the property of k−-independent graphs by using the first Zagreb
index for a graph to be k−-independent. In this section, we continue this program to explore sufficient
conditions for a graph to be k−-independent in terms of the inverse degree.

The following result is due to a survey by Bauer et al. [32].

Lemma 5. ([32]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence and k ≥ 1. If dk+1 ≥ n− k, then π enforces
k−-independent.

We conclude this paper with the following structural result.

Theorem 5. Let G be a connected graph of order n. If

ID(G) <
−k2 + kn− k− n2 + n
(n− 1)(k− n + 1)

.
= Q5(n, k),

then G is k−-independent. Moreover, F(G) = Q5(n, k) if and only if G ∼= Kk+1 + Kn−k−1.

Proof. Suppose that G is not k−-independent. Then it follows from Lemma 5 that dk+1 ≤ n− k− 1. From the
definition of the inverse degree, we have

ID(G) ≥ k + 1
n− k− 1

+
n− k− 1

n− 1

=
−k2 + kn− k− n2 + n
(n− 1)(k− n + 1)

which is a contradiction. Hence the result follows.
Furthermore, the condition in Theorem 5 cannot be dropped. If G ∼= Kk+1 + Kn−k−1, then one can easily

see that ID(G) = Q5(n, k). Conversely, let ID(G) = Q̂5(n, k), then all inequalities in the proof should be
equalities. Hence, therefore d1 = · · · = dk+1 = n − k − 1, and dk+2 = · · · = dn = n − 1. Hence, G ∼=
Kk+1 + Kn−k−1.
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