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ABSTRACT 
 
The basic operational parameters of a simplified pico-hydropower system with provision for water 
recycling were investigated. Five simplified turbine of runner diameters 0.45, 0.40, 0.35, 0.30 and 
0.25 m were designed, locally fabricated, and tested in conjunction with five PVC pipes of diameters 
0.0762, 0.0635, 0.0508, 0.0445 and 0.0381 m as penstocks. Five simple nozzles of area ratios 1.0, 
0.8, 0.6, 0.4 and 0.2 were fabricated for each penstock diameter. The turbines were successively 
mounted at the foot of an overhead reservoir such that the effective vertical height from the outlet of 
the reservoir to the plane of the turbine shaft was 6.95 m. A 1.11 kW electric pump was used to 
recycle the water downstream of the turbine back to the overhead reservoir. The mean maximum 
and minimum rotational speeds of the shaft of each turbine were measured for each penstock 
diameter and nozzle area ratio, and the volumes of water displaced in the reservoirs were also 
monitored. These measured data were used to compute shaft power and system volumetric flow 
rate for each operation. Dimensionless flow, head and power coefficients, and specific speed were 
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computed and functional characteristics relating them developed. This standard procedure generally 
used for the analysis of geometrically similar hydraulic machines have been applied to this system 
and the results obtained will be invaluable in development of the system into a simple, 
environmentally friendly and decentralized small power generation system that could potentially 
contribute positively to the energy mix in Nigeria. The possibility of scaling the system to 
accommodate larger turbine and penstock diameters, and as a result higher capacity alternators 
exist and is a target for future developments. 
 

 

Keywords: Decentralized power; environmentally friendly; net head/flow rate characteristic; nozzle 
area ratio; penstock diameter; Turbine dimensionless coefficients. 

 

1. INTRODUCTION  
 
Though energy plays a very crucial role in 
economic development of a nation, access to it is 
very minimal in many developing countries as a 
result of a mix of several factors [1-8]. In Nigeria, 
many of the functional energy supply systems 
operate below installed capacity, and are 
frequently susceptible to limitations resulting from 
human and natural causes. Moreover, many of 
the systems are large, centralized and utilize 
energy resources that have some adverse 
impacts on the environment. Furthermore, 
several of the energy resources in use are 
depleting so that sustainability is not guaranteed 
[9-15]. Exploration and transportation of new 
deposits also compound the negative effects on 
the environment such as oil spillage while 
escalating friction in the host communities           
[16-18].  
 
Consequently, there is growing interests in and 
clamor for the use of renewable energy sources, 
as well as in smarter, smaller and more 
decentralized energy systems which will utilize 
these renewable sources and the existing 
conventional ones more efficiently [19-31]. These 
systems convey more control to the end user 
creating more sense of responsibility with regard 
to the maintenance and security of the system, 
especially with the prevalent activities of 
saboteurs of diverse motivations. Also, the 
development of systems that generate the 
required power at or close to the point of 
application has the potential of mitigating attacks 
on supply structures particular with the growing 
regional restiveness in developing countries like 
Nigeria. Such systems do not require 
maintenance and protection of the supply 
structure [17,32-44]. 
   
Hydropower has numerous advantages over 
other renewable energy sources but the large 
schemes which are generally predominantly in 
use in Nigeria and other developing countries, 
also pose a lot of environmental problems              

[45-55]. These include harm to aquatic animals 
and habitat, possibility of enhancement of 
disease to the neighboring communities, as well 
as displacement of settlements. There is also 
growing evidence of emissions from the 
reservoirs. Large to small hydro which depend on 
flowing water sources are affected by the 
hydrological cycle (seasonal fluctuation) which 
translates to blackouts and significant power 
outages at some periods of the year. Also, debris 
and silt blockages of turbine passages often 
arise which also affect power supply. Evidence 
also exist of disease enhancement in the region 
of hydropower reservoirs [56-66]. 
 
There is therefore increased interest in very 
small hydro and pumped storage hydro [67-77]. 
Pico-hydro power provides a very good option 
because it suits the general characteristics of 
smarter, smaller and decentralized systems, and 
can be utilized in locations where larger 
conventional systems cannot be optimally 
located. For instance, it is now a very useful 
option in the Asian developing countries where 
the topographies are natural barriers to the 
uptake of conventional grid-connected energy 
systems [78-90]. However, it has been verified 
that seasonal fluctuations of water levels also 
affect the operation of the conventional Pico-
hydro schemes. Low water levels do not allow 
optimal operation while very high ones can 
sweep the units away [91-98].  

 
There are many sites suitable for Pico-hydro 
development in Nigeria as in many other African 
countries but deliberate focus has not been given 
to its development [17]. For instance, no direct 
attention is paid to Pico-hydro systems 
development in the apparently aggressive efforts 
of Nigeria’s Federal Government to revitalize the 
hydropower sector [14,44]. Hence, the 
development of a Pico-hydro system that may 
not require naturally flowing water becomes 
necessary. Developing any means of applying 
the advantages of hydropower while                   
greatly minimizing the operational and           
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natural shortcomings will be a step in the right 
direction.  
 
A simplified Pico-hydro system that is a variant of 
the pumped hydro scheme which could be 
operated where there is no naturally flowing 
water by utilizing overhead water storage is 
currently being developed in University of 
Agriculture, Makurdi, Nigeria for more than four 
years now. Such a system will eliminate several 
of the issues that conventional hydropower 
systems have to contend with while retaining its 
substantial advantage as a system for power 
supply like current best practices in renewable 
energy systems. It will be decentralized thereby 
conceding control to the user and reducing the 
risk of sabotage. The limitation imposed by 
seasonal variations of water levels on 
conventional Pico-hydro systems will be 
eliminated as well [99-107]. The current aspect of 
the work looks at the prospects for acceptability 
of this system as a simple contribution to the 
energy mix in Nigeria. It focusses on the 
generation of information that will come in handy 
for future developments of the system. 
 

For all hydraulic machines, it is customary to 
develop a net head and flow rate characteristic 
that governs the performance. In conventional 
hydropower practice, the flow rate and gross 
head data are collected from the site with the net 
head obtained from the gross head. This 
characteristic is therefore invaluable in predicting 
or fixing the net head and the flow rate for sites 
where hydropower systems will be installed  
[108-114]. For this system under development, 
these parameters are not site-dependent but 
system components-dependent. This means that 
for this system, the net head and flow rate 
characteristic will be useful in selecting system 
components in terms of basic dimensions. In 
other words, they can be fixed and then used to 
determine the configurations of the system 
component. 
 

Furthermore, dimensionless analysis of hydraulic 
machines yields dimensionless coefficients that 
are very useful in summarizing the performance 
of dimensionally similar machines. It is quite 
useful to have a dimensionless group involving 
shaft rotational speed, flow rate, head and power 
with the diameter of the machine. This makes the 
group independent of the machine size. This can 
be done by manipulating the other dimensionless 
groups for the machine to obtain a new 
dimensionless coefficient. Hence, the coefficients 
can be used for scaling of system components 
such as turbine and penstock diameters in order 

to get a desired power output. The dimensionless 
coefficients include flow (KQ), head (KH) and 
power (KP) coefficients as well as specific speed 
(KS). For maximum efficiency, there are generally 
only one set of values for them [108-110,115]. 
The functional relationships between these 
coefficients are experimentally determinable and 
constitute a set of performance characteristics 
representing the whole family of geometrically 
similar machines. They are identical for all such 
machines if factors such as Reynold’s number, 
Mach number and relative roughness are the 
same. For all machines belonging to the same 
family, and operating under similar conditions the 
dimensionless coefficients are the same at 
corresponding points of their characteristics. 
Hence, according to [110] the similarity laws 
governing the relationships between such 
corresponding points may be written as in the 
equations below. 
 

Q α ND3                          (1) 
 

gH α N
2
D

2
                         (2) 

 

P α ρN
3
D

5
                         (3) 

 

This work presents the net head and flow rate 
characteristics as well as the dimensionless flow, 
head, power and specific speed coefficients of 
the simple Pico hydropower system undergoing 
development. The results will be useful for the 
continued development aimed at arriving at an 
implementable status for rural and urban 
locations in Nigeria in a bid to contribute 
positively to the sustainable energy mix. There 
will eventually be need to install various 
capacities for various users depending on 
several factors ranging from cost to location and 
the application. These results will come in handy 
then.  

 
2. MATERIALS AND METHODS  
 
PVC pressure pipes of diameters 0.0762, 
0.0635, 0.0508, 0.0445 and 0.0381 m were 
selected as penstocks. According to [116] and 
[117] PVC is lighter, has better friction 
characteristics and is cheaper than steel apart 
from the subjective factor of being more readily 
available in the required sizes. Their pressure 
characteristics are similar. The associated 
frictional losses were estimated using the 
equations suggested by [118] for pipes of 
diameter greater than 5 cm and flow velocity 
below 3 m/s. An average value of C = 137.5 was 
used in this study because it lies between 135 
and 140 for plastic pipes. 
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The turbulence losses (Ht) were estimated with 
values for the coefficients K for pipe entry, gate 
valve and 90º elbow obtained from [110] as 0.5, 
0.25 and 0.9 respectively. For change in 
penstock dimensions, K values were obtained 
using the equation given by [118]. The K values 
for the reduction of penstock from 0.0762 to 
0.0635 m, 0.0635 to 0.0508 m, 0.0508 to 0.0445 
m and 0.0445 to 0.0381 m were then computed. 
Ht values were then computed with only the 
valve, elbow and entry coefficients applied to the 
largest diameter penstock. The contraction 
coefficients were then successively added as the 
penstock sizes were reduced. The net head 
available was then computed. 
 

The design procedure for a single nozzle Pelton 
turbine resembling a propeller turbine was 
adopted. This is because a propeller turbine 
allows for the generators to be directly driven 
thereby avoiding transmissions and the attendant 
losses. Also, the runners had a relatively lower 
number of fixed blades, therefore simplifying the 
manufacturing process and reducing the 
potential for inconsistent blade construction and 
orientation. Furthermore, the Pelton turbine can 
be mounted vertically or horizontally [119-128]. A 
simple V-shape blade with about 60º included 
angle was adopted. The approach presented by 
[129] was used in this work in order to obtain the 
base turbine runner diameters which were then 
scaled upwards to enhance manufacturability 
and application for the study [130,131]. The 
values of the system flow rate computed were 
substituted into the expressions for the turbine 
parameters given by RETScreen. The specific 
speed of the turbine was computed using 
number of nozzles = 1 (for simplicity and ease of 
manufacture). This was used to compute the 
turbine runner diameter, DT in metres. Five (5) 
different values of DT were obtained 
corresponding to the five penstock sizes selected 
which were then scaled upwards. The scaled 
values of DT used for this work were 0.25, 0.30, 
0.35, 0.40 and 0.45 m. The hub diameter and 
hence, blade height or cup length was found 
using an expression given by [117] as well as the 
blade height. The number of blades was selected 
from a chart of parameters for sizing turbines by 
[124] to be 6. 

 
The hub and cups were cast from aluminium 
after carrying out the necessary preliminary tests 
and preparations to the sizes obtained. The cups 
were diametrically welded to the hub using gas 
welding. Two circular flanges made of 2 mm 
steel sheet to facilitate the coupling of a steel 

shaft of 20 mm diameter to the hub is welded to 
the shaft after passing the shaft through a hole in 
it. The flange has provisions for three (3) M14 
bolts and nuts evenly located along a convenient 
circumferential plane so that the hub with the 
cups are clamped perpendicular to the shaft. An 
average ratio of flange diameter (Df) to hub 
diameter (Dh) of 0.75 was used for the 5 turbines. 
Fig. 1 shows the assembled turbine runner. The 
assembled turbine was mounted in a casing 
made of 4 mm sheet steel and externally 
reinforced having an annulus or flow area (A) 
which satisfies the minimum condition for a 
clearance of about 0.03 m. Figure 2 shows an 
assembled turbine. Appropriate bearings and 
seals were selected for mounting the turbine to 
facilitate free rotation and to prevent leakages. 
The casing cover was secured in position using 
M13 and M14 bolts and nuts. The support of the 
turbine was made of a combination of 5 mm u-
channel and 4 mm angle iron with provisions for 
four M20 foundation bolts. The exit duct was of 
rectangular cross-section and tapered to a 76.2 
mm diameter internally threaded cylindrical 
adaptor. The duct was conveniently slanted in 
order to enhance discharge of water from the 
turbine. Fig. 3 shows an exploded view of the 
turbine. 
 
The nozzles were fabricated using 1 mm thick 
steel sheet. The development of each was cut 
out of the sheet metal which was then 
appropriately folded and welded using gas 
welding because of the light gauge of the metal. 
The nozzles had a mean height of 50 cm. Figure 
4 shows all the nozzles used for the study, each 
set of 5 including nozzles of area ratios 1.0 to 
0.2. 
 
Fig. 5 shows the complete set up for the study 
while Fig. 6 shows an enlarged view of the 
components on the ground. It has two reservoirs, 
one mounted overhead and the other 
underground. The arrangement was such that 
the overhead reservoir delivers water to the 
turbine through the penstock. Five nozzles of 
similar length of about 50 cm were fabricated for 
each penstock diameter with area ratios of 1.0, 
0.8, 0.6, 0.4 and 0.2 to facilitate flow acceleration 
at the exit of the penstock. Water from the 
nozzles impinges on the turbine blades when the 
outlet valve of the overhead reservoir is opened. 
The whole turbine assembly is mounted 
horizontally with the water outlet port 
conveniently inclined such that flow from the 
turbine casing is enhanced. The turbine 
discharges water to the ground reservoir. The 
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water is then re-circulated to the overhead 
reservoir by a 1.11 kW DAB Model electric pump. 
The pump has a rated flow rate of 3.0 – 10.8 
m

3
/h (0.833 – 3.0 x 10

-3
 m

3
/s) with maximum and 

minimum heads of 29 m and 17 m respectively 
and 220 – 240V, 7.1A. 
 

For this study, the head, H ≈ 6.95 m. The 
experimental system discharge was then 
determined for each penstock size by timing the 
discharge of water from the overhead reservoir. 
The rotational speed of the shaft of the turbine 
(N) was measured using the DT-2268 and DT-
2858 Contact Type Digital Tachometer for each 
penstock diameter and nozzle configuration. The 
tachometers had a 5-digit, 10 mm LCD display 
with measurement range of 2.5 – 99,999 Rpm. 
The resolution is 1 Rpm over 1000 Rpm with 

accuracy of ±  0.05% + 1 Rpm and photo 
detecting distance of up to 300 mm. The 
tachometers have memory capability of showing 
the last value, maximum value and minimum 
value, and a typical sampling time of 1 second.  
  
The measurements were carried out without 
coupling the alternator to the turbine (no-load 
tests). The rotor of the tachometer was pressed 
lightly into a blind hole on the rotating shaft in 
order to measure the rotational speed. This was 
repeated several times depending on the 
duration for a particular measurement which was 
limited by the water level in the reservoir on the 
ground. During this period, the maximum and 
minimum rotational speed were observed and 
recorded. An average duration of about 4.24 
minutes/measurement was used throughout with 
the minimum and maximum values being 1.73 
and 6.75 minutes. The whole procedure was 
carried out for each of the 5 turbines. The values 
of N were corrected for losses imposed by the 
provision for discharging water into the reservoir 
on the ground by applying a factor of Hd/H, 
where Hd = the height of the delivery port above 
the plain of the turbine shaft and H = head. 
 

For the 4 smaller penstock diameters, the values 
of N were also corrected because the delivery 
pipe to the ground reservoir was not reduced to 
match their smaller diameters. A factor of Dp/Dd, 
where Dd = diameter of the delivery pipe and Dp 
= diameter of penstock. The water levels in the 
two reservoirs were monitored simultaneously 
using a dip stick along with a measuring tape and 
used to obtain the volume of water discharged. 
The volumetric flow rates were then computed. 
The fluid power (Pf) available for each operation 
was computed using the relationship given by 
[111] and [76]. The shaft power, Ps, and 

efficiency of the system were computed from first 
principles using equations given by the same 
author. 
 

 
 

Fig. 1. A turbine runner assembly for the 
system 

 

 
  Fig. 2. An assembled turbine 

 

Based on results of dimensionless analysis, the 
dimensionless groups flow, head and power 
coefficients as well as specific speed were 
computed using equations 4 to 7 respectively. 
The head and power coefficients were plotted 
against the flow coefficients to formulate a 
functional relationship between them. They can 
be computed using the expressions below               
[108-110]. 
 

Flow coefficient, KQ = Q/ND
3
           (4) 

 

Head coefficient, KH = gH/N2D2          (5) 
 

Power coefficient, KP = P/ρN
3
D

5
          (6) 

 

Specific speed, KS = KP
1/2/KH

5/4          (7) 
 

The net head flow rate characteristic was 
established for the system. 



 
 
 
 

Edeoja et al.; JERR, 1(1): 1-17, 2018; Article no.JERR.41393 
 
 

 
6 
 

 
 

Fig. 3. Exploded view of the turbine 
 

        
 

(a) 0.0762 m             (b) 0.0635 m            (c) 0.0508 m        (d) 0.0445 m      (e) 0.0381 m 
 

Fig. 4. The nozzles used for the indicated penstock diameters 
 

 
 

Fig. 5. The Pico-Hydropower System  

Overhead 
Reservoir 
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Fig. 6. Enlarged view of the 1.11 KW Pump, Turbine and penstock 
 

3. RESULTS AND DISCUSSION 
 

For this study, the mean values of the flow rate 
and the net head for the no-load tests as 
presented in Table 1 were plotted in Fig. 7. The 
characteristic curve was parabolic in nature with 
R

2
 value of 0.9697. The trend is as is obtainable 

in previous studies [109,110,126,132-142]. It has 
the following expression given in equation 8: 
 

Hn,avg = - 27132Qavg
2 + 740.6Qavg + 1.5363(8) 

 

where Hn,avg =  mean system net head (m) and 
Qavg = mean system flow rate (m

3
/s). This 

expression can be very useful in obtaining an 
initial design for scaling up flow rate for further 
developments of the system for given values of 
Hn,avg  [143-149]. 
 

Based on results of dimensionless analysis of 
hydraulic turbine parameters, four coefficients 
were computed to summarize and generalize 
their performance. The coefficients were head, 
flow and power coefficients as well as the 
specific speed. They were computed using 

equations 4 to 7. These formulations will be very 
useful especially with regards to future plans to 
scale up the system in order to generate higher 
power [150,151]. They will be invaluable for initial 
design data and are key to the expectation of 
achieving this system in its eventual application 
form. The computed values of the coefficients 
are shown in Table 1. 

 
Fig. 8 relates the mean head coefficient (KH) to 
the mean flow coefficient (KQ). For this work, the 
characteristic curve is parabolic with R

2
 value          

of 0.9939 and the expression is given in equation 
9. 
 

KH = 1765.2KQ
2
 – 1.6098KQ + 0.0027        (9) 

 
Fig. 9 shows the corresponding curve for the 
relationship between the mean power coefficient 
and the flow coefficient which   also has a 
parabolic trend with R

2
 value of 0.9982. The 

expression obtained is shown in equation 10. 

 
KP = 3.4689KQ

2
 – 0.0019KQ + 1 x 10

-6 
     (10) 

 

 
 

Fig. 7. Mean net head and flow rate characteristic for the system 
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The coefficients constitute a set of performance 
characteristics representing the whole family of 
five turbines that were fabricated for this work. 
They are identical for all of them as long as 
parameters such as Mach number, Reynolds’s 
number and relative surface roughness of the 
pipe walls are the same, or can be assumed 
constant. This assumption holds for this work. 
Applying similarity laws and based on the 
assumptions above, these coefficients can be 
used to predict the performance of another 
similar turbine with smaller or larger runner 
diameter running at a given speed                     
[108-110,115]. 
 

According to [108] and [109], the specific speed 
(��)  can be obtained from equation 7 by 
manipulating KQ, KH and KP. The mean values of 
the computed KS from experimental data for each 
of the family of five turbines is shown in Table 1. 
They all lie within the range 1.7 < KS < 3.0. 
Though these values are quite small compared 
to the range of 10 to 35 reported by [111] and 
[117] for one-jet Pelton turbines, they are close to 
each other, strengthening an earlier suggestion 
in the process of the larger scope of the study 
that the difference between the runner diameters 
was not large enough to significantly impact upon 
their performances. 

Table 1. Computed dimensionless coefficients for the turbines for penstock of diameter 
0.0762 m 

 

Turbine Runner 
Dia.,       DT (m) 

Nozzle area 
ratio, 

A2/A1 

Head 
Coeff.,     
KH x 10-3 

Flow Coeff.,    

 KQ x 10-4 

Power Coeff.,     
KP x 10-6 

Specific 
speed 

KS 

 

 

0.45 

 

 

 

1.0 4.196 8.182 3.433 1.735 

0.8 3.832 6.980 2.675 1.715 

0.6 3.104 5.933 1.841 1.852 

0.4 2.887 4.511 1.302 1.705 

0.2 2.373 2.871 0.681 1.576 

 1.717 

 

 

0.40 

 

 

 

1.0 3.278 9.073 2.974 2.199 

0.8 2.527 7.014 1.772 2.350 

0.6 2.405 6.296 1.514 2.310 

0.4 2.145 4.319 0.927 2.086 

0.2 2.141 3.207 0.686 1.798 

 2.149 

 

 

0.35 

 

1.0 4.211 12.586 5.300 2.146 

0.8 3.714 10.841 4.027 2.189 

0.6 3.273 9.251 3.028 2.223 

0.4 2.666 6.684 1.782 2.204 

0.2 2.097 4.423 0.928 2.147 

 2.182 

 

 

0.30 

 

1.0 3.581 15.884 5.688 2.723 

0.8 2.475 12.348 3.056 3.166 

0.6 2.144 11.305 2.424 3.375 

0.4 

0.2 

2.118 

2.066 

8.926 

6.541 

1.895 

1.351 

3.030 

2.639 

 2.987 

 

 

0.25 

 

 

 

1.0 3.973 23.152 9.198 3.041 

0.8 3.619 20.402 7.384 3.061 

0.6 3.121 17.412 5.435 3.160 

0.4 3.099 14.209 4.347 2.851 

0.2 3.013 9.441 2.842 2.388 

 2.900 
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Fig. 8. Variation of mean head coefficient with mean flow coefficient for the turbines 
 

 
 

Fig. 9. Variation of mean power coefficient with mean flow coefficient for the turbines 
 

4. CONCLUSION 
 
So far, the findings in this work on the simplified 
pico-hydro system show that potential exists for 
it to contribute positively towards ameliorating 
the energy crunch in Nigeria and other 
developing countries as a unit that will operate 
without dependence on unpredictable climate 
conditions, without adverse effects on the 
environment and which concedes control to the 
end user. Further development is however 
necessary to fully realize this potential. Its 
parameters need to be properly manipulated to 
achieve a self-running status before it can 
become commercially useful. 
 
The following conclusions are hereby drawn 
from this experimental study: 
 

(1) Dimensionless groups to summarise the 
performance of the five turbines used for 
the study have been formulated which will 
be invaluable when the system will be  
modified for better power generation; and 

(2) The net head and flow rate characteristic 
for the system has been established which 
will be useful for obtaining base data for 
future work; 

The recommendations for this work are issues 
for the next phase(s). Based on the current 
findings and the original aspirations of this study, 
further funding will be sought so that the 
following aspects could be investigated: 
 

(1) The delivery pipe from the pump will be 
modified  to cause the ratio of delivery to 
discharge from the reservoir to be more 
favourable for system performance; 

(2) The system will be tested with the 
overhead reservoir located above 7.0 m to 
take advantage of greater head; 

(3) The effect of multiple overhead reservoirs 
(or larger capacity ones) will be 
investigated; 

(4) The introduction of solar power for the 
recycling system in order to explore the 
hybridization option; and 

(5) An economic comparative analysis of this 
system with a stand-alone solar power 
system and a fossil fuel powered system 
will also be undertaken. 
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