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Abstract 

In lung nodules there is a huge variation in structural properties like Shape, 
Surface Texture. Even the spatial properties vary, where they can be found 
attached to lung walls, blood vessels in complex non-homogenous lung 
structures. Moreover, the nodules are of small size at their early stage of de-
velopment. This poses a serious challenge to develop a Computer aided di-
agnosis (CAD) system with better false positive reduction. Hence, to reduce 
the false positives per scan and to deal with the challenges mentioned, this 
paper proposes a set of three diverse 3D Attention based CNN architectures 
(3D ACNN) whose predictions on given low dose Volumetric Computed 
Tomography (CT) scans are fused to achieve more effective and reliable re-
sults. Attention mechanism is employed to selectively concentrate/weigh 
more on nodule specific features and less weight age over other irrelevant 
features. By using this attention based mechanism in CNN unlike traditional 
methods there was a significant gain in the classification performance. Con-
textual dependencies are also taken into account by giving three patches of 
different sizes surrounding the nodule as input to the ACNN architectures. 
The system is trained and validated using a publicly available LUNA16 data-
set in a 10 fold cross validation approach where a competition performance 
metric (CPM) score of 0.931 is achieved. The experimental results demon-
strate that either a single patch or a single architecture in a one-to-one fa-
shion that is adopted in earlier methods cannot achieve a better performance 
and signifies the necessity of fusing different multi patched architectures. 
Though the proposed system is mainly designed for pulmonary nodule detec-
tion it can be easily extended to classification tasks of any other 3D medical 
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diagnostic computed tomography images where there is a huge variation and 
uncertainty in classification. 
 

Keywords 

3D-CNN, Attention Gated Networks, Lung Nodules, Medical Imaging,  
X-Ray Computed Tomography 

 

1. Introduction 

Lung Nodule is also known as lung tumor which is characterized by uncon-
trolled cell growth in the lung tissues. According to American Cancer Society, 
Lung cancer occurred in 222,500 people and resulted in 155,870 deaths world-
wide in 2017 [1], which makes it the most common cause of cancer related death 
in men and second most common in women after breast cancer [2]. The 5-year 
survival rate is only 17% for lung cancer [3], but if detected early on, survival in-
creases to 54% [1]. As it is very difficult to diagnose cancer at a very early stage, a 
timely detection is necessary to monitor the growth pattern in the affected re-
gion. According to National Lung Screening Trail (NLST) [4] apart from tradi-
tional two dimensional X-Ray scans, low dose three dimensional CT scans have 
proved to be most useful for diagnosis and reduced the mortality rate up-to 20%. 
However, due to their huge volumetric data it becomes increasingly difficult for 
a CAD system to analyze these scans and is susceptible to more number of false 
positives per scan resulting in repercussions and financial problems. Hence, the 
goal of any CAD system for assisting doctors is to reduce the false positives as 
much as possible. The true positives are difficult to be detected and to get them 
accurately differentiated from True negatives in first place due to the following 
reasons. 
 Huge variations in the contextual information surrounding the nodules as 

well as the structural intensity of nodules that vary like solid, part solid and 
non-solid/Ground Glass opacity and can be visualized in slices of Figure 1. 
Which are extracted from the center of a nodule with patch size of 64 × 64 × 
64. 

 Small size of nodules ranging from 3 mm and going up to 30 mm and above. 
 Various types of nodules with different spatial location and shapes namely 

Isolated Nodule, Juxta-Pleural, Pleural tail, Cavitary and Calcific nodule that 
can be visualized in Figure 2. 

 Some false positives/True Negatives carry similar shapes and structures to 
true positives which can be coined by the term hard mimics and can be visu-
alized in Figure 3. 

It is due to these challenges radiologists find it difficult to exactly localize the 
lung nodules and it is also even more challenging for making a CAD system 
which can tackle the aforementioned challenges. Hence, a novel approach is re-
quired to deal with these significant challenges. 
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Figure 1. Different types of nodules in terms of variation in their intensity. (a) Solid; (b) 
Part Solid; (c) Non-Solid. 
 

 

Figure 2. Different types of nodules in terms of their external attachment and shapes (a) 
Common Isolated Nodule; (b) Juxta-Pleural Nodule; (c) Pleural Tail Nodule; (d) Cavitary 
Nodule; (e) Calcific Nodule. 
 

 

Figure 3. False positives which are similar in appearance to the true positives that make 
the task even more challenging. 
 

Current CAD approaches can be divided into two categories: classification 
approaches based on hand-crafted features [5] [6] and deep learning approaches 
with automated feature extraction [7]-[12]. In the first category, approaches 
usually measure radiological characteristics like texture, shape, nodule size, loca-
tion and employ a classifier to find the malignancy status. These methods lead to 
measurement errors as the collection and selection of suitable set of features for 
lung nodule diagnosis is trivial. 

With the active involvement of research in medical imaging by deep learning 
community, methods using 3D and 2D CNN’s that fall into second category are 
proposed for lung nodule detection with better false positive reduction which 
outperformed the methods based on hand crafted features. Though 2D CNN’s 
achieved a greater performance than the methods based on hand crafted features 
they cannot completely utilize the 3D information of lung CT scans. In order to 
mimic the 3D information several approaches were proposed which were mostly 
based on adjusting the 2D CNN’s to capture the information from various 
cross-sectional slices in different orientations or even varying the convolutional 
filter size in a multi-path fashion to concatenate the feature maps for final result 
[7] [8]. Similar 2D variants were also employed for the segmentation of lung 
nodules [9] [10] where [9] utilized scans from different orientations like axial, 
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sagittal and coronal for voxel level classification and in [10] multi-path fashion is 
followed with both 3D and 2D slices from center of the nodule as input for each 
path. But with the recent advancement in the computational power of the sys-
tems, methods using 3D CNN were also implemented whose performance sur-
passed the 2D Variants where 3D patches of different sizes are fed as input to the 
model architectures in one to one or many to one fashion for averaging each in-
dividual result or concatenating all the feature maps before final classification 
respectively [11] [12]. [13] used different patch sizes as input to the different 
CNN architectures in a one to one fashion for ensembling all their predictions 
for a more reliable result where a sensitivity of 94% is achieved at an average of 5 
false positives per scan. The methods discussed above suffered from huge im-
balance in classification between the positive and negative classes though some 
methods have performed augmentation. Moreover, the range of variations in 
position, size, intensity and surrounding contextual information of nodules in 
Lung CT scans cannot be learned by a single 3D CNN architecture alone which 
draws a requirement for establishing consensus from diverse multi patch 3D 
CNN architectures. 

Also, attention mechanism has been widely in various tasks recently wherever 
selective features of most importance at the task are to be weighed more sup-
pressing other complex irrelevant features. For example in [14] attention me-
chanism was used in U-Net++ for automatic segmentation of liver by merging 
only task oriented features at different levels in the encoder-decoder architec-
ture. This works due to the ability of attention mechanism in increasing the 
weight of the focus regions while suppressing the regions in background that are 
unrelated to the segmentation task at hand. 

In this paper, to address the aforementioned problems we propose a unique 
CAD system for false positive reduction based on diverse multi-patch 3D ACNN 
architectures. The architectures comprise of a newly developed 3D ACNN ar-
chitecture, two others inspired from dense-net [15] and res-net [16] namely 
MP-ACNN1, MP-ACNN2 and MP-ACNN3 respectively. Attention mechanism 
was incorporated to minimize the effect of background irrelevant non-nodule 
features on model performances. To deal with the large variations in the shape, 
size and surroundings of lung nodules and to classify them accurately from their 
very similar false positives multiple patches are considered for concatenating all 
their feature maps before the final classification. To further boost the sensitivity 
at even very low false positive rates, an ensembling technique on predictions of 
diverse 3D ACNN architectures is followed. Also to overcome the imbalance 
between true positives and false positives a new iterative training approach is 
employed where equal number of positive and negative samples is considered in 
each iteration. We validated our proposed system on LUNA16 [17] dataset and 
have achieved a state of the art performance which outperformed several me-
thods in the challenge as well as some of the approaches stated above. 

The main contributions of our proposed system can be summarized as fol-
lows: 
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 3D attention based CNN architectures named MP-ACNN1, MP-ACNN2 and 
MP-ACNN3 was developed which works well with the 3D volumetric data or 
sequence of 2D frames like CT scans that have more 2D spatial representa-
tions along with temporal connections in z-axis similar to video frames that 
are stacked from a video for action-recognition. 

 A new technique is followed to deal with the huge variations in different 
characteristics of nodules like size, shape and its surroundings where in dif-
ferent sized patches which can encapsulate diverse set of features are used as 
input to the proposed model architectures in a multi path fashion for final 
classification. 

 Inspired from the way ground truths were formulated in LIDC/IDRI [18] 
dataset where a consensus is established among at least 3 out of 4 radiolo-
gists, reliable result is obtained by fusing the results of diverse model archi-
tectures namely MP-ACNN1, MP-ACNN2 and MP-ACNN3. 

 To deal with the huge imbalance between positive and negative samples a 
new iterative training approach is followed in which equal number of positive 
and negative samples are taken. 

2. Materials and Methods 

Figure 4 below gives an overview of our methodology. First a Lung CT scan is 
given as input to a pre-processing module which outputs only the region of in-
terest from the entire scan, retaining all the information of nodules. In the next 
step the processed scan goes as input to a training samples generator which 
outputs positive and negative patches of different sizes using the ground truth 
containing the locations of all nodules. Augmentation is performed on positive 
samples for up-sampling. The final step is to feed all the samples generated as 
input to the proposed diverse multi-patch architectures followed by a fusion of 
their predictions for final classification. 
 

 

Figure 4. Overview of the detailed flow of the proposed system starting from the input of raw CT scan to that of the final predic-
tion. 
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2.1. Dataset 

For training our model, we have used LUNA16 challenge dataset [17] that is ex-
tracted from LIDC/IDRI dataset [18] which consists of 1018 patient scans. All 
scans that are having a slice thickness of greater than 2.5 mm are excluded re-
sulting in a total of 888 volumetric thoracic CT scans in LUNA16 dataset [17]. A 
two phase annotation procedure is followed to collect the ground truths in this 
dataset [17] by four experienced radiologists. After each radiologist annotated all 
the candidate nodules of the CT scans, each candidate nodule with an agreement 
of at least three radiologists was approved as ground truth. All the 888 scans are 
divided into 10 different subsets for the use of 10 fold cross validation. The CT 
scans provided are in Meta Image file format (MHD/raw). Each CT scan has 
around 100 - 400 slices in the z-axis depending upon different patients and each 
two dimensional slice is of 512 × 512 pixels. In each CT scan voxel dimensions 
can vary in all the x, y, and z directions according to the configurations of dif-
ferent CT machines. The nodule sizes in this dataset vary in the range of 3 - 33 
mm. The dataset provides respective patient’s ID and x, y, z coordinates of the 
nodule centers along with diameter for positive annotations as given in Table 1. 

2.2. Pre-Processing 

In LUNA16 dataset [17] depending upon the configuration of CT machines 
used, different scans have varying voxel spacing along x, y, z directions (Figure 
5). This condition affects performance of the ACNN model because of the 
non-homogeneity in the resolution of input scan. Therefore an isomorphic res-
olution is necessary so that the ACNN models can generalize equally for all the  
 
Table 1. Sample data of positive annotations ground truths in LUNA16 dataset. 

Seriesuid coord X coord Y coord Z diameter mm 

1.3.6.1.4.1.14519.5.2.1. 
6279.6001.1002252872 
22365663678666836860 

−128.69 −175.31 −298.38 5.65 

1.3.6.1.4.1.14519.5.2.1. 
6279.6001.1002252872 
22365663678666836860 

103.78 −211.92 −227.12 4.22 

1.3.6.1.4.1.14519.5.2.1. 
6279.6001.1003981387 
93540579077826395208 

69.63 −140.94 876.37 5.78 

1.3.6.1.4.1.14519.5.2.1. 
6279.6001.1006213830 
16233746780170740405 

−24.01 192.10 −391.08 8.14 

1.3.6.1.4.1.14519.5.2.1. 
6279.6001.1006213830 
16233746780170740405 

2.44 172.46 −405.49 18.54 

1.3.6.1.4.1.14519.5.2.1. 
6279.6001.1006213830 
16233746780170740405 

90.93 149.02 −426.54 18.20 
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Figure 5. Histogram of voxel spacing’s of all the scans present in the LUNA16 dataset. 
 
scans. In order to arrive at a best voxel spacing, all the scans present in the data-
set are analyzed (Figure 5). A mean of 0.68 mm in x-y axis and 1.56 mm in 
z-axis is achieved upon which on experimenting 1 × 1 × 1 mm is the best spacing 
which resulted in better accuracy along with less computational load. Nearest 
interpolation is performed on all the scans for bringing all the voxels to same 
resolution by using a resize factor which is computed using original spacing and 
new spacing.  

A CT scan of a lung comprises of several irrelevant information like bones, 
tissues, blood, water, air apart from lungs and have to be removed for the better 
detection of nodules by the model. Firstly, to eliminate air noise the CT scans are 
convolved with gaussian kernel that has a standard deviation of 1.0 mm. In CT 
images, the intensities of ribs, examination bed and fat is generally above −100 
HU and the tissue of the lung is in the range of −400 to −600 HU. To segment 
the lung region iterative thresholding [19] is used. The trachea and bronchi will 
be preserved even after the coarse segmentation. We have used 3D connected 
component labeling and 3D region-growing to eliminate the trachea and bron-
chi. Erosion is performed to separate the nodules attached to the blood vessels. 
Figure 6 illustrates the results of preprocessing. 

2.3. Training 

Different sized patches are used in the training and the motive behind this was 
the variation in the size of nodules which generally ranges from 3 mm to 33 mm 
in this dataset. Different patch sizes reflect on different contextual information 
and hence can generally consider various distance dependencies which results in 
a more reliable and accurate result. If the patch dimension is small, smaller lung 
nodules are detected better but larger nodules are disregarded. If the patch di-
mension is too big, irrelevant structures surrounding the nodule are also consi-
dered which hinders the performance. Therefore a proper analysis is required 
before considering patch sizes for which we have examined the histogram of the 
nodule sizes present in the dataset as given in Figure 7 and came to an optimum 
set of patch sizes which are 16 × 16 × 16, 32 × 32 × 32 and 48 × 48 × 48. 
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Figure 6. (a) Original Slice (b) Histogram of its HU (c) Generated Mask (d) Final seg-
mented slice. 
 

 

Figure 7. Histogram of nodule sizes present in LUNA16 dataset for the analysis in consi-
dering different patch sizes. 
 

Majority of the small sized nodules are in the range of 3 - 10 mm. Hence the 
first patch considered is of size 16 × 16 × 16 which can enclose the entire small 
nodule as well as consider certain surrounding contextual information. Medium 
sized nodules are in the range of 10 - 25 mm and hence the second patch consi-
dered is of size 32 × 32 × 32 which can cover the majority of nodules with rich 
contextual information for smaller nodules along with certain range of contex-
tual information for medium sized nodules. Larger nodules are in the range of 
25 - 35 mm and hence the third patch is of size 48 × 48 × 48 for these extreme 
cases. In Figure 8 multiple patch sizes that are considered can be visualized on 
how wide range of contextual information is captured for nodules ranging from 
smaller size to that of the larger size. After the generation of different patches a 
two staged approach is followed to tackle the class imbalance problem between 
positive and negative samples which is generally a common type of problem 
when dealing with majority of medical images. 

First stage: 
Data augmentation is performed to up sample the positives from a ratio of 

1:483 to 1:12 by rotating them at various angles like 90, 180, 270 and flipping 
them in all the three directions (x, y and z). In this way the model also becomes 
invariant to variations in orientation of lung nodules. 

Second stage: 
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Figure 8. Illustration of the different patch sizes exploiting the different contextual in-
formation surrounding the nodule. (a) and (b) are the small sized nodules having diame-
ter less than 10 mm. (c) and (d) are the medium sized nodules having diameter in be-
tween 10 - 25 mm. (e) and (f) are the large sized nodules having diameter greater than 25 
mm. 
 

Novel iterative training approach is followed which contains the following 
steps: 
 Let’s suppose we have N number of positive samples. 
 Our model first gets trained on these N positive samples and the first N nega-

tive samples as input. 
 Similarly in the corresponding iterations the same N positive samples and the 

next N number of negative samples are used as input for the training of our 
model. 

Using this unique method we got best results as equal emphasis is even given 
to the positive samples with respect to negative samples while training despite of 
their huge imbalance. In this way we can use the standard loss functions like 
cross-entropy without any bias towards negative samples. 

Along with the consideration of various patch sizes, to increase the perfor-
mance we also propose a fusion model of different ACNN architectures to re-
duce the false positives. A single ACNN architecture has limited learning capa-
bility and may not learn all the significant features to differentiate between lung 
nodules and their very similar false positive/non-nodule structures. This prob-
lem draws a requirement for establishing a consensus among diverse Multi 
Patched Attention based CNN architectures by using a fusion technique. 

A total of three architectures are proposed namely Multi-patch Attention 
based CNN1 (MP-ACNN1), Multi-patch Attention based CNN2 (MP-ACNN2) 
and Multi-patch Attention based CNN3 (MP-ACNN3) whose architectures can 
be visualized in a, b and c of Figure 9 respectively. All the three architectures are 
constructed in such a way that each one is very diverse from the other two 
whether it is in the number of convolutional layers, number of filters or in the 
connections made in between the layers thereby creating different hierarchal 
features. Different patch sizes of 16 × 16 × 16, 32 × 32 × 32 and 48 × 48 × 48 are  
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Figure 9. Visualization of the proposed diverse multi-patch architectures. The convolution kernel size is represented as number of 
filters@ filter dimensions (i.e., 8@3 × 3 × 3 represents 8 filters of kernel size 3 × 3 × 3), (a) MP-ACNN1; (b) MP-ACNN2; (c) 
MP-ACNN3. 

 
used as input for the proposed architectures in a multi path fashion for the three 
paths namely P1, P2 and P3 for concatenating their feature maps at the ending 
layers before final classification. The important units in the construction of 
proposed 3D ACNN’s are given below. 
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2.3.1. 3D Convolution 
In 3D convolution layer, a group of 3D kernels convolve with the output of pre-
ceding layer to extract some high level feature maps. Unlike a 2D convolution 
where a single patch is given as input, 3D convolution takes an input of stacked 
patches and outputs a stack of feature maps based on the number of kernels 
used. Kernel size also effects the variation in feature volumes. After the convolu-
tion is done a bias value is added to it and an activation function like ReLU, 
Softmax is applied on the whole resulting value. This process can be formulated 
as the following equation 

( ) ( ) ( )1

, ,
, , , , , ,l l l l

i i k ki
k u v w

f x y z b f x u y v z w W u v wσ − 
= + − − − 

 
∑ ∑       (1) 

where l
if  and 1l

kf
−  represent the ith and kth 3D feature volume in lth and the 

previous (l − 1)th layer respectively. l
kiW  is the 3D convolutional weight kernel 

connecting l
if , 1l

kf
−  and ( ), ,l

if x y z , ( )1 , ,l
kf x u y v z w− − − −  and  

( ), ,l
kiW u v w  are their corresponding element wise values where , ,x y z  and 
, ,u v w  are the co-ordinates of l

if , l
kiW  respectively. l

ib  is the bias term and 
σ  is the activation function which in our case is ReLU. 

2.3.2. Pooling Layer 
3D max-pooling layers are used in between 3D convolutional layers to down 
sample the dimensions of input 3D feature volumes in all the three directions to 
gain invariance to translations in local 3D space. If lth layer is a convolutional 
layer and (l + 1)th layer is a 3D max-pooling or 3D average pooling layer, then 
the pooling layer will receive a four dimensional tensor  

1 2, , ,l l l X Y Z N
NT f f f × × × = ∈    as input. Max-pooling operation selects the 

maximum activation and average pooling selects the average of all the activa-
tions within a neighborhood and gives an abstracted output X Y Z NT ′ ′ ′× × ×′∈ , 
where (X; Y; Z) and (X'; Y'; Z') are the 3D feature volumes sizes before and after 
the corresponding pooling operation, N represents the total number of 3D fea-
ture volumes and it is same throughout the pooling operation. If the pooling 
window size is W and the stride followed is S, the reduced feature volume size 
along X-axis can be computed using Equation (2) which remains the same for Y' 
and Z'. 

1X WX
S
−′ = + ,                        (2) 

2.3.3. Fully Connected Layer 
The nodes have more dense connections in fully connected layers compared to 
convolutional layers (i.e. each node in dense layer is connected to all the nodes 
of adjacent layers unlike in convolutional layers where local connections are 
made). The dense layers are very useful in the better representation of the ex-
tracted features. Fully connected layers are implemented by flattening the volu-
metric features into a vector for matrix multiplication of weights, then adding a 
bias value to it followed by a non-linear activation function. This process can be 
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formulated as the following equation: 

( )1l l l lf b W f −= +                         (3) 

where 1lf −  is the input feature vector obtained after flattening the volumetric 
features in (l − 1)th layer, lf  is the output feature vector of the lth layer which is 
fully connected, lW  is the weight matrix and lb  is the bias. 

2.3.4. Soft-Max Layer 
The ending layer of the 3D ACNN architecture before output is soft-max. If the 
nodes at the ending layer are denoted by a vector Lf  with C number of output 
classes, final prediction probability for each class can be determined using 

( ) ( )
( )

1

0

exp
,

exp

L
cL

c C
L

c
c

f
p f

f
−

=

=

∑
                      (4) 

where L
cf  is the cth node in feature vector of last layer. All the resulting activa-

tions from the soft-max layer are positive and lie in between 0 to 1 with their 
summations resulting to 1. As a result, they can be interpreted as the estimated 
probability distribution predicted by the network. 

2.3.5. Cost Function/Loss Function 
Binary cross entropy loss/log loss function is used to optimize the parameters of 
3D ACNN by minimizing the loss function ( )pH q  or until the point of con-
vergence as follows: 

( ) ( )( ) ( ) ( )( )( )
1

1 log 1 log 1
N

p i i i i
i

H q l p l l p p l
N =

−  = ⋅ + − ⋅ − ∑        (5) 

where il  is the label and ( )ip l  is the corresponding probability. Similarly 
( )1 il−  and ( )1 ip l−  are for other class and N represent the total number of 
samples. 

2.3.6. Batch Normalization 
Batch normalization decreases the internal co-variance shift in the values of 
hidden layers due to the continuous update of weights during backpropagation. 
Batch normalization can be expressed as, 

( )( ) ( )*b b M b std b−= ,                    (6) 

where *b  the new value for a single element within a batch is, ( )M b  is the 
mean for a batch and ( )std b  is standard deviation in a batch. 

The Equation (6) is further extended to identity function ** *b bγ β× += , 
where **b  is the final value after normalization. γ and β are the values learned 
for each layer. 

2.3.7. 3D Attention Gate 
Human vision system is the basis in the design of Attention gate which gives 
more importance to the object features in context and less weight age to other 
irrelevant features. The Attention gate usage can be expressed using below equa-
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tions,  

out l ix x α= ⋅ ,                          (7) 

where outx  is the element by element wise multiplication between the input 
features map lx  and the attention coefficient α . The attention coefficient be-
longs to a set of [0 - 1] and prunes the networks irrelevant features in classifica-
tion. We have used additive attention instead of multiplicative attention due to 
its accuracy despite having a tradeoff in computational complexity [20]. The 3D 
multi-dimensional multiplicative attention coefficient can be computed as: 

( )( )( )T T T
2 1i x l g i gW x W g b bα σ σ Ψ= Ψ + + + ,            (8) 

where 1σ  and 2σ  are the ReLU and Sigmoid functions respectively. xW , gW  
and Ψ  are the linear transformations. For linear transformations on the input 
feature vector lX  and gating feature vector ig  1 × 1 × 1 kernels are used. bΨ  
and gb  are the bias terms. The architecture of our 3D attention mechanism can 
be visualized in (Figure 10). 

2.3.8. MP-ACNN1 
The structure of proposed MP-ACNN1 can be visualized in Figure 9(a) 
MP-ACNN1 has less number of convolutional layers compared to other two 
proposed architectures MP-ACNN2 and MP-ACNN3. But the number of train-
able parameters are high due to the number of filters which can learn more pri-
mitive features at starting layers. In this architecture 2 × 1 × 1 average pooling is 
applied at the starting of each path followed by four convolutions each with a 
kernel size of 3 × 3 × 3 and a total of 64, 128, 256 and 512 kernels respectively 
followed by a max-pooling. For the other two paths P2 and P3 an extra convolu-
tion is applied of kernel size 2 × 2 × 2 with total kernels of 512 and 64 respec-
tively. The ending layers of all the three paths are flattened for concatenation 
before passing them to dense layer having 512 nodes with a dropout of 50% for 
final classification using soft-max.  

2.3.9. MP-ACNN2 
The proposed MP-ACNN2 architecture is given in Figure 9(b). This architec-
ture is inspired from res-net [16] and has a total of 16 residual blocks for all the  
 

 

Figure 10. 3D Attention gate architecture. 
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three paths namely P1, P2 and P3. Before the start of residual block, a convolu-
tion of 16 kernels each having a size 3 × 3 × 3 and batch normalization is applied 
at the input. Each residual block consists of 3 convolutions with kernel sizes of 1 
× 1 × 1, 3 × 3 × 3 and 1 × 1 × 1 respectively and varying number of kernels ac-
cording to corresponding residual block. Each convolution in the residual block 
is followed by a batch normalization. A residual connection of output from pre-
vious block is also included in each residual block with an exception in the first 
residual block where an output from a parallel convolution of 32 kernels each 
having a size 3 × 3 × 3 is taken as residual. After 16 residual blocks global max 
pooling is applied and the resulting nodes in each path are concatenated before 
passing them to dense layer having 256 nodes with a dropout of 50% for final 
classification using soft-max. 

2.3.10. MP-ACNN3 
The proposed MP-ACNN3 architecture is as shown in Figure 9(c). This archi-
tecture is inspired from dense-net [15] and has a total of three dense blocks with 
transition blocks in between them for all the three paths namely P1, P2 and P3. 
Before the start of dense block a convolution of 16 kernels each having a size 3 × 
3 × 3 and batch normalization is applied at the input. Dense block consists of 5 
convolutions and each having 8 kernels of size 3 × 3 × 3. All the convolutions in 
dense block are followed by a batch normalization. Dense connections are also 
included in the dense block with the output from preceding layer concatenated 
to the outputs of current layer. 

In the transition block a convolution of 56 kernels each having a size of 1 × 1 
× 1 followed by an average pooling of window size 2 × 2 × 2 are applied. After 
the end of three dense blocks global average pooling is applied and the resulting 
nodes in each path are concatenated before passing them to dense layer having 
136 nodes with a dropout of 50% for final classification using soft-max. 

2.3.11. MP-AFNet 
As visualized in Figure 11, in proposed MP-AFNet predictions from all the  
 

 

Figure 11. Visualization of the proposed MP-AFNet that fuse the results from diverse 
Multi patched ACNN’s proposed MP-ACNN1, MP-ACNN2 and MP-ACNN3 for final 
classification of either nodule or non-nodule. 

https://doi.org/10.4236/jcc.2021.94001


V. K. Vipparla et al. 
 

 

DOI: 10.4236/jcc.2021.94001 15 Journal of Computer and Communications 
 

architectures MP-ACNN1, MP-ACNN2 and MP-ACNN3 after training are 
fused in a hybrid approach. First majority voting is conducted to get the initial 
decision of either nodule or non-nodule. Second the prediction probabilities of 
majority decision are averaged to get the final probability of being a nodule. (i.e. 
if the predicted probabilities are 0.482, 0.997, 0.993, from initial majority voting 
it is evident that it is a nodule with 2 votes and the values of these votes are av-
eraged to get a final probability of 0.995). In this way if a single model fails at es-
tablishing correct result other two models can curb that mistake leading to a 
more reliable result with less number of false positives.  

3. Results and Discussion 

3.1. Experimental Setup 

The proposed system is trained on GTX1080 Ti GPU and Keras [21] is used as 
deep learning framework which is built on Tensor flow [22] as backend. To deal 
with different medical image formats, SimpleITK library is used. A set of 3D 
patches at resolutions of 48 × 48 × 48, 32 × 32 × 32, and 16 × 16 × 16 are ex-
tracted from CT scans by using the x, y and z center coordinates of the nodule 
candidates present in the dataset. The patch sizes in [11] are taken by analyzing 
the distribution of voxels covered by the nodules separately in both x-y plane 
and z-plane. But lung nodules are known for their huge variations in the growth 
patterns. Hence the patch sizes cannot be generalized by experimenting only on 
this particular dataset [18] and is the reason for taking uniform voxels along x, y, 
z directions for all the patch sizes considered. All these patches of size 48 × 48 × 
48, 32 × 32 × 32, and 16 × 16 × 16 are considered after a proper analysis which 
can cover all the nodules of varying sizes along with different views of contextual 
information. They covered 100%, 99% and 90% of the nodules in the positive 
annotations of the dataset.  

For faster convergence, we applied a min-max normalization to patches in the 
range of [−1000, 400] Hounsfield units (HU). For nonlinear transformation in 
convolution and fully-connected layers, we used a ReLU function. To make our 
network robust, we also applied a dropout technique to fully connected layers 
with a rate of 0.5. During the training phase, we set the learning rate to 0.001, the 
momentum to 0.9, the batch size to 64 and completed the training through an 
iterative approach of 12 iterations. For each iteration three epochs are taken so 
that the model doesn’t get over-fitted over the completion of all the iterations, 
yet can well generalize between the positive and negative samples. 

To evaluate the performance of the proposed system, free receiver operation 
characteristics (FROC) analysis [23] is employed. In the FROC curve, sensitivity 
is plotted as a function of the average number of false positives per scan 
(FPs/scan). Competitive Performance Metric (CPM) [24] score is obtained by 
calculating average sensitivity at seven predefined false positive rates: 1/8, 1/4, 
1/2, 1, 2, 4 and 8 FPs per scan.  

The proposed system is evaluated with 10-fold cross-validation. That is, after 
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dividing all data into 10 disjoint subsets, 9 subsets are added to the training set, 
and the remaining is used for testing. 

The dataset comprises of 754,975 candidates which were detected using five 
different lung nodule detection CAD systems [25] [26] [27] [28] [29] of which 
only 1557 are positives and the remaining are negatives that indicates a serious 
imbalance between positives and negatives (1:483). To circumvent this potential 
bias problem, nodule samples are augmented by 90˚, 180˚, and 270˚ rotation on 
a transverse plane and 1-pixel shifting along the x, y, and z axes. Thus, the pro-
portion between the numbers of nodules to non-nodules is approximately 1:12. 
Table 2 presents the details about the number training, validation, and test sam-
ples. 

3.2. Performance Comparison 

The performance of the proposed system is evaluated by comparing CPM score 
of our system with CPM scores of state-of-the-art methods on LUNA. 

16 challenge dataset [7] [11] [30] [31] [32] [33]. Precisely, Setio et al.’s method 
[7] employs multi view (9) 2D patches, Xie et al.’s method [32] used a boosting 
architecture with three 2D slices. Zou et al. method [31] used multi resolution 
2D patches. Though, the task is of three-dimensional nature, these methods used 
variants of 2D CNNs. Ding et al.’s method [33] takes 3D patches as input, Dou et 
al.’s method and Gorkam Polat et al. method [11] [30] used multi-level 3D 
patches. The CPM scores at seven distinct FPs per scan are summarized in Table 
3. 

The proposed MP-AFNet surpassed the average CPM scores of state of the art 
systems stated in Table 3. Particularly when comparing with Ding et.al method, 
which also uses 3D CNN, our method has an increased average CPM score of  
 
Table 2. The data of the number of training, validation and test samples used for each 
fold. The values in the parenthesis indicate the number of samples retained for validation 
and test (#validation samples/#test samples). The value outside the parenthesis is the 
number of training samples which also include 20% validation samples. # = Af-
ter-Augmentation. 

Dataset Scans Nodules Nodules (#) Non-Nodules 

Fold 1 799 (159/89) 1418 (283/139) 56,720 681,474 (136,294/71,944) 

Fold 2 799 (159/89) 1435 (287/122) 57,400 679,607 (135,921/73,811) 

Fold 3 799 (159/89) 1380 (276/177) 55,200 679,559 (135,911/73,859) 

Fold 4 799 (159/89) 1368 (273/189) 54,720 673,878 (134,775/79,540) 

Fold 5 799 (159/89) 1371 (274/186) 54,840 675,342 (135,068/78,076) 

Fold 6 799 (159/89) 1455 (291/102) 58,200 679,828 (135,965/73,590) 

Fold 7 799 (159/89) 1398 (279/159) 55,920 675,201 (135,040/78,217) 

Fold 8 799 (159/89) 1414 (282/143) 56,560 678,505 (135,701/74,913) 

Fold 9 800 (160/88) 1406 (281/151) 56,240 678,049 (135,609/75,369) 

Fold 10 800 (160/88) 1368 (273/189) 54,720 679,319 (135,863/74,099) 
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Table 3. CPM scores comparison of proposed system with other state of the art systems 
on LUNA16 dataset at seven false positives per scan (0.125, 0.25, 0.5, 1, 2, 4 and 8). 

Method 
CPM 

CNN 0.125 0.25 0.50 1 2 4 8 Average 

Zuo et al. 2D 0.672 0.694 0.714 0.739 0.766 0.787 0.822 0.742 

Xie et al. 2D 0.493 0.688 0.796 0.852 0.864 0.864 0.864 0.775 

Setio et al. 2D 0.636 0.727 0.792 0.844 0.876 0.905 0.916 0.814 

Gorkam et al. 3D 0.588 0.669 0.749 0.831 0.863 0.892 0.913 0.786 

Dou et al. 3D 0.677 0.834 0.927 0.972 0.981 0.983 0.983 0.908 

Ding et al. 3D 0.797 0.857 0.895 0.938 0.954 0.970 0.981 0.913 

MP-AFNet (proposed) 3D 0.821 0.869 0.935 0.968 0.971 0.976 0.982 0.931 

 
0.931 (1.97% increase). It is also important to note that, even though our system 
has lower sensitivity at 1, 2, 4, and 8 false positives per scan compared to [11], 
our system still achieved a higher sensitivity of 0.821%, 0.869% and 0.935% at 
0.125, 0.25, 0.50 false positives per scan respectively compared to all the methods 
given in Table 2. That is, even at very low false positive rates which is the main 
goal of our automated lung nodule detection system. 

3.3. Quantitative Analysis of Proposed Architectures 

To make the networks more diverse, the architectures are designed to have dif-
ferent number of parameters that are trainable: MP-ACNN3 (801,434), 
MP-ACNN2 (6,006,338) and MP-ACNN1 (43,634,882) where the number of 
parameters trainable is in parenthesis along with different number of convolu-
tional layers and filters used. We have quantitatively assessed the performance of 
the proposed multi patch attention architectures along with that of the final fu-
sion model. The detection sensitives of each model at 7 pre-defined false posi-
tives per scan and the final average CPM score are given in Table 4. In order to 
ensure that the system can deal with the accurate detection of true positives 
along with a very few number of false positives, very low false positive rates 
(0.125, 0.25, 0.50 false positives per scan) are included in the evaluation metrics. 

The FROC curves of all the models are given in Figure 12(a). First, regarding 
the approach of Multi-Patch Attention based Feature integration, each of the 
networks that used multiple patches outperformed the networks that have used 
single patches. While the MP-ACNN3, MP-ACNN2 and MP-ACNN1 achieved 
an average CPM of 0.878, 0.886 and 0.900 respectively, the corresponding 
SP-ACNN3, SP-ACNN2 and SP-ACNN1 achieved an average CPM of only 
0.770, 0.777 and 0.799respectively. It is also observed that for each of the multi 
patch networks the sensitivities can reach above 90% at the rate of 8 false posi-
tives per scan. These results show the importance of considering different scales 
of contextual information from the center of nodules and also the discriminating 
capability of complex nodule representations in huge volumetric CT scans by 3D  
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Figure 12. (a) FROC performance curve of all the models given in Table 3 [SP-ACNN1, 
SP-ACNN2, SP-ACNN3, MP-ACNN1, MP-ACNN2, MP-ACNN3, MP-AFNet]. The 
curve includes detection sensitivities at 7 pre-defined false positives per scan [0.125, 0.25, 
0.50, 1, 2, 4, and 8]; (b) ROC performance curve for the final proposed MP-AFNet (AUC 
score: 98.98). The curve includes the plotting of False Positive Rates on X-axis to True 
Positive Rates on Y-axis. 
 
Table 4. The CPM scores of different Attention Based Single, Multi-Patched models and 
of the proposed fusion model (SP-ACNN3, SP-ACNN2, SP-ACNN1, MP-ACNN3, 
MP-ACNN2, MP-ACNN1, MP-AFNet). 

Model 
CPM 

0.125 0.25 0.50 1 2 4 8 Average 

SP-ACNN3 0.577 0.663 0.736 0.810 0.843 0.869 0.897 0.770 

SP-ACNN2 0.592 0.674 0.743 0.812 0.847 0.871 0.905 0.777 

SP-ACNN1 0.627 0.693 0.765 0.836 0.866 0.897 0.914 0.799 

Proposed MP-ACNN3 0.731 0.813 0.847 0.908 0.924 0.955 0.968 0.878 

Proposed MP-ACNN2 0.743 0.824 0.852 0.916 0.938 0.962 0.973 0.886 

Proposed MP-ACNN1 0.764 0.846 0.873 0.925 0.947 0.968 0.979 0.900 

Proposed MP-AFNet 0.821 0.869 0.935 0.968 0.971 0.976 0.982 0.931 

 
Attention based CNN’s. The MP-ACNN1 has even achieved a detection sensitiv-
ity of 0.925% at 1 false positives per scan. It is also worth noting the difference of 
the models CPM score between Attention and Non-attention based methods as 
seen in Table 5. There is an average difference of up to 3.7% CPM score between 
Attention and Non-Attention models. Also in Figure 12(b). ROC curve of the 
proposed MP-AFNet can be visualized which has an AUC score of 98.98. This 
shows the importance of suppressing various non nodule features using gating 
mechanisms. 

Second, regarding the effect of using fusion/ensembling, the proposed 
MP-AFNet outperformed all the individual Multi-Patch attention networks by 
obtaining an average CPM of 0.931. When considering 0.125 false positives per 
scan, MP-ACNN3, MP-ACNN2 and MP-ACNN1 achieved a sensitivity of 
merely 0.731%, 0.743% and 0.764% respectively. Whereas, our fusion model has 
reached a sensitivity of 0.821% which exceeded the results of MP-ACNN3,  
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Table 5. The CPM scores of different non-attention single, multi-patched models and of 
the proposed fusion model (SP-CNN3, SP-CNN2, SP-CNN1, MP-CNN3, MP-CNN2, 
MP-CNN1 and MP-FNet). 

Model 
CPM 

0.125 0.25 0.50 1 2 4 8 Average 

SP-CNN3 0.502 0.614 0.683 0.742 0.797 0.810 0.838 0.712 

SP-CNN2 0.532 0.594 0.685 0.756 0.798 0.832 0.847 0.720 

SP-CNN1 0.561 0.615 0.693 0.776 0.811 0.857 0.868 0.740 

Proposed MP-CNN3 0.679 0.762 0.795 0.853 0.896 0.910 0.924 0.831 

Proposed MP-CNN2 0.685 0.782 0.820 0.871 0.913 0.927 0.932 0.847 

Proposed MP-CNN1 0.712 0.793 0.833 0.895 0.926 0.934 0.948 0.863 

Proposed MP-FNet 0.778 0.821 0.893 0.924 0.941 0.948 0.954 0.894 

 
MP-ACNN2 and MP-ACNN1 by 0.09%, 0.078% and 0.057% respectively. These 
results signify the importance of establishing a consensus among diverse ACNN 
architectures for the best performance in false positives reduction. It is also 
noteworthy that the individual multi–patch networks MP-ACNN3, MP-ACNN2 
and MP-ACNN1 achieved better results than the methods of [7] [30] [31] [32] at 
all the 7 false positives per scan as given in Table 3. From these results, it is evi-
dent that the methods using 3D ACNN’s outperform its 2D variants in learning 
features of complex lung structures and also signifies the importance of multi 
patch attention based feature integration in classification of nodules. The train-
ing and validation accuracy, loss of all the three different architectures we have 
proposed are given in Figure 13.  

On analyzing the curves in Figure 13, it can be easily noted that the 
MP-ACNN3 has given the highest training and validation accuracy at the start-
ing iterations due to its less number of trainable parameters. But as the training 
process converged gradually after a few iterations, MP-ACNN1 having more 
number of trainable parameters has yielded highest training and validation ac-
curacy. The final performance (accuracy) of the models are of the following or-
der in our case (MP-ACNN1 > MP-ACNN2 > MP-ACNN3). Though one model 
might outperform others in some cases thereby drawing a requirement of fusing 
the predictions from diverse architectures for a more reliable result. Some of 
these cases can be visualized in Figure 14. 

Though we cannot completely generalize the reason for varying predictions in 
Table 6 by different models proposed, an appropriate reason can be established 
on analyzing the values along with the variation in the parameters of models. In 
(i) of Figure 14, the nodule is more complex in its size and shape which is why 
the MP-ACNN1 model failed to detect whereas MP-ACNN2 and MP-ACNN3 
models being deeper with more number of layers detected the nodule better with 
a probability of more than 99% by learning complex features well with more 
number of convolutions. Correspondingly in (ii) of Figure 14, the nodule is 
more simple in its nature which is why the MP-ACNN1 having lesser number of  
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Figure 13. Training, Validation Accuracy and Loss Curves of different models considered 
with the number of epochs along x-axis, Accuracy/Loss along y-axis (a) MP-ACNN1; (b) 
MP-ACNN2; (c) MP-ACNN3. 
 

 

Figure 14. (i), (ii), (iii), (iv) are the 2D transversal slices extracted from the middle of 48 
× 48 × 48 cube which is extracted from the center of the nodule. (i), (ii) are nodules and 
(iii), (iv) are non-nodules. 
 
Table 6. Nodule predictions of different models proposed (a) MP-ACNN1; (b) 
MP-ACNN2; (c) MP-ACNN3 which shows the importance of fusing the results from di-
verse architectures thereby maintaining a consensus decision. 

Predictions 

 MP-ACNN1 MP-ACNN2 MP-ACNN3 MP-AFNet 

i 0.495 0.998 0.995 0.997 

ii 0.999 0.412 0.794 0.897 

iii 0.001 0.0006 0.984 0.001 

iv 0.000003 0.000001 0.542 0.000002 

 
convolutional layers detected the nodule with a probability of greater than 99% 
whereas MP-ACNN2 failed in detecting the nodule. The same is the reason for 
MP-ACNN1 performing better than other models in terms of accuracy and the 
final FROC/CPM score as the smaller nodules constitute majority portion in this 
dataset [17] of up-to 80% in the dataset. In (iii), (iv) cases of Figure 14, the 
MP-ACNN1 and MP-ACNN2 have correctly classified them as non-nodules 
whereas MP-ACNN3 failed by miss-classifying them as nodules. MP-ACNN3 
failed in many cases apart from (iii), (iv) of Figure 14 in classifying non-nodules 
which is why it has achieved a low FROC/CPM score. But in automating the 
nodule detection system, more complex nodules as well as non-nodules have to 
be discriminated well, which is why in this research 3 diverse architectures are 
considered to fuse their results for overall increase in the performance of the 
proposed system. Some of the true positives detected by the proposed system 
with highest probability along with the nodules which were detected with rela-
tively lowest probability are given in Figure 15 and Figure 16 respectively. 
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Figure 15. Nodules detected with highest probability by the proposed system. Each patch 
is a representative 64 × 64 transverse slice extracted from the center of the nodule. The 
nodule is enclosed inside the white bounding box. 
 

 

Figure 16. Nodules detected with lowest probability by the proposed system. Each patch 
is a representative 64 × 64 transverse slice extracted from the center of the nodule. The 
nodule is enclosed inside the white bounding box. 
 

As seen in Figure 15, the nodules detected with highest probabilities are uni-
form in shape, bigger in size and are of solid or part solid type whereas the no-
dules detected with lowest probabilities as seen in Figure 16 are non-uniform in 
shape, smaller in size and are of non-solid type which makes our model difficult 
to predict as they are similar to the background. As majority of the nodules in 
the dataset are either of solid or semi-solid type, there is a certain bias in training 
towards the non-solid types and hence to detect them with high probability 
more number of such samples should be included in the training set. 

Our system has also performed well in detecting the nodules attached to the 
lung wall as seen in (v) of Figure 14 and the reason is while preprocessing the 
CT scans emphasis is also given to retain the information of nodules attached to 
the borders using the techniques discussed in lung segmentation.  

As seen in Figure 17, it is evident that there is a significant role attention has  
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Figure 17. Intermediate feature maps showing the importance of attention based archi-
tectures to that of non-attention architectures. (i) Input Patch (ii) Attention based Inter-
mediate features of proposed MP-AFNet, (ii) Intermediate features without attention of 
proposed MP-AFNet. 
 
on identifying and retaining nodule specific features even after several iterations 
of convolutions by giving more weightage to region of interests. With attention 
there is a great improvement in the classification performance of the model. 

4. Conclusions 

In this work an automated lung nodule detection CAD system for lung CT scans 
is proposed based on Attention based multi-patch, multi-network strategy for 
false positive reduction. In this work, we exploited three major approaches: 1) 
Use of different patch sizes that can cover varying nodule sizes in CT scans along 
with different views of contextual information; 2) Fusion of three diverse 3D At-
tention based CNN architectures namely MP-ACNN1, MP-ACNN2 and 
MP-ACNN3 for false positive reduction in complex structures where there is no 
homogeneity; and 3) an iterative training procedure to tackle the problem of 
unbalanced classification. The novel attention approach followed in our 3D 
CNN’s helped to detect even small sized nodules accurately without the need for 
any nodule localization method. Also, the fusion approach used helped the sys-
tem in detecting all the nodules with huge variations where in nodules with less 
detection complexity get easily detected by less deeper models having few con-
volutions with the highest probability and correspondingly nodules with high 
detection complexity get easily detected by deeper models having more convolu-
tions with the highest probability. Especially, our system got promising results 
even at very low false positives per scan which is the main requirement for any 
CAD system. Our current work is mostly focused on false positive reduction 
given the center coordinates of nodule candidates but our system can be easily 
extended to a complete CAD system for detecting positive nodules in low dose 
CT scans by including an initial candidate screening system before our false pos-
itive reduction system. The proposed system is generic as well as modular and it 
can easily be extended to any other classification tasks of 3D medical diagnosis 
data. These results also signify that CT scans can be leveraged to bring in prom-
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ising automated diagnosis systems using latest technologies. Also with the im-
provements that are happening in low dose CT scans it has proven to be a safer 
option in clinical applications utility space with no fear of cancer due to radia-
tion. 
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