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Abstract 
Most approaches to estimate a scene’s 3D depth from a single image often 
model the point spread function (PSF) as a 2D Gaussian function. However, 
those methods are suffered from some noises, and difficult to get a high qual-
ity of depth recovery. We presented a simple yet effective approach to esti-
mate exactly the amount of spatially varying defocus blur at edges, based on a 
Cauchy distribution model for the PSF. The raw image was re-blurred twice 
using two known Cauchy distribution kernels, and the defocus blur amount 
at edges could be derived from the gradient ratio between the two re-blurred 
images. By propagating the blur amount at edge locations to the entire image 
using the matting interpolation, a full depth map was then recovered. Expe-
rimental results on several real images demonstrated both feasibility and ef-
fectiveness of our method, being a non-Gaussian model for DSF, in providing 
a better estimation of the defocus map from a single un-calibrated defocused 
image. These results also showed that our method was robust to image noises, 
inaccurate edge location and interferences of neighboring edges. It could 
generate more accurate scene depth maps than the most of existing methods 
using a Gaussian based DSF model. 
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1. Introduction 

Estimation of 3D depth from the scene is a fundamental problem of computer 
vision and computer graphics applications including robotics, scene under-
standing, image deblurring and refocusing and 3D reconstruction. Conventional 
methods for 3D depth recovery have focused on stereovision [1], structure from 
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motion [2], and other methods that require two (or more) images. However, 
these algorithms often end up ignoring the numerous additional monocular cues 
that can also be used to obtain 3D information [1]. However, these methods suf-
fer from the occlusion problem, or cannot be applied to dynamic scenes, which 
limits their applications in practice. 

In recent work, several methods have been proposed to recover depths map 
from a single image, which do not suffer from the correspondence problem of 
multiple images matching. Their process is simple and fast, and therefore, they 
get more and more people’s attention. However, depth estimation from a single 
image is a difficult task and requires that we take into account the global struc-
ture of the image, as well as use prior knowledge about the scene [3]. Currently, 
methods for single image depth restoration commonly use geometric depth in-
formation cues such as horizontal planes, vanishing points and edge surfaces, or 
monocular depth cues such as shading, color changes, perspective, texture varia-
tions, texture gradient, occlusion, hazy, sample objects, similar scenes, defocus, 
etc. [2]-[9]. These methods are still computing complex, difficult to apply in 
non-restricted scenarios. 

The depth recovery method using monocular depth cues of a single defocused 
image is developed from the traditional method of Depth from Defocus (DFD) 
[10] which requires a pair of images of the same scene with different focus set-
ting, including active illumination methods [11], coded aperture defocus depth 
methods [12] [13] and edge blur depth method [14]. Active illumination me-
thods project sparse grid dots onto the scene and the defocus blur of those dots 
is measured by comparing them with calibrated images. Then the defocus meas-
ure can be used to estimate the depth of a scene. The coded aperture method 
changes the shape of camera aperture [12] or uses multiple color-filter aper-
ture (MCA) [13] [15] to make defocus de-blurring more reliable. A defocus 
map and an all-focused image can be obtained after deconvolution using cali-
brated blur kernels. These methods require additional illumination or camera 
modification to obtain a defocus map from a single image. 

In this paper, we focus on a more challenging problem of recovering the de-
focus map from a single image captured by an uncalibrated conventional cam-
era, using edge blur defocus. The edge blur defocus depth methods are based on 
the amount of blur in the image with depth objects in the scene, defocus blurred 
image can be modeled as a convolution of clear image and PSF depth recovery 
from single-focus image. Elder and Zucker [8] used the first- and second-order 
derivatives of the input image to find the locations and the blur amount of edges. 
The defocus map obtained is sparse. Bae et al. [9] extend this work and obtain a 
full defocus map from the sparse map using an interpolation method. 

Namboodiri and Chaudhuri [14] model the PSF of defocus blur as a thermal 
diffusion process and use the inhomogeneous inverse heat diffusion to estimate 
defocus blur at the edge locations, and then apply a graph-cut based method to 
recover the scene’s depth map. Zhuo et al. [16] use a Gaussian function to model 
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the PSF. The input image is re-blurred using a known Gaussian blur kernel and 
the ratio between the gradients of input and re-blurred images is calculated. The 
blur amount at edge locations can be derived from the ratio. They acquire better 
results of depth recovery than Namboodiri’s. Fang et al. [17] use a DSF similar to 
Zhuo’s, assuming the local depth is continuous. The depth of the other regions is 
interpolated from the depth of the inner edge by a local plane fitting. However, 
most of the existing Gaussian based PSF have the ambiguity problem between 
the hard edge and the soft edge of the scene [18]. In contrast, we estimate the 
defocus map in a different but effective way. The input image is re-blurred using 
a known Cauchy blur kernel and the ratio between the gradients of input and 
re-blurred images is calculated. We show that the blur amount at edge locations 
can be derived from the ratio. We then apply the matting interpolation to prop-
agating the blur amount at edge locations to the entire image. We finally obtain 
a full depth map. 

Inspired by [16] and [19], combined with our previous work [20], we propose 
an efficient blur estimation method based on the Cauchy PSF, and show that it is 
robust to noise, inaccurate edge location and interference from neighboring 
edges. Without any modification to cameras or using additional illumination, 
our method is able to obtain the defocus map of a single image captured by con-
ventional camera. Our method can estimate the depth map of the scene with 
fairly good extent of accuracy. 

2. Defocus Model 

As the amount of defocus blur is estimated at edge locations, we must model the 
edge first. To estimate the amount of defocus blur at the edges of objects in an 
image, we adopt the ideal step edge model [16] which is 

( ) ( ) ,f x Au x B= +                        (1) 

where u(x) is the unit step function. A and B are the amplitude and offset of the 
edge, respectively. Note that the edge is located at x = 0. 

We assume that focus and defocus obey the thin lens model. According to 
thin lens model, when an object is placed at the focusing distance df, the image 
will appear sharp [21], as shown in Figure 1. When the object is at other distance 

 

 
Figure 1. A thin lens model. 
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d, it results in a blurred image. The blurred pattern depends on the shape of 
aperture and is called the circle of confusion (CoC). The diameter of CoC c cha-
racterizes the amount of defocus which is a non-linear monotonically increasing 
function of the object distance d [21]. 

The defocus blur can be modeled as the convolution of a sharp image f(x) 
with the point spread function (PSF) [10]. The PSF can be approximated by a 
Gaussian function g (x, σ), where the standard deviation k cσ = ⋅  is propor-
tional to the diameter of the CoC c and measures the defocus blur amount. We 
use σ as a measure of the depth of the scene, and call it the re-blur scale. A 
blurred edge i(x) can be represented as 

( ) ( ) ( ),i x f x g x σ= ⊗                      (2) 

According to [19], we know that a PSF is only required rotationally symme-
tric, and non-Gaussian model can be applied to a PSF. The shape of a Cauchy 
distribution function is similar to a Gaussian function, and drops more smoothly 
and heavier trailing. The previous work [20] also confirmed that the Cauchy 
distribution model is more robust to noise than Gaussian. So that we use a 2D 
Cauchy distribution function instead of 2D Gaussian. The scale parameter σ of a 
Cauchy distribution (as same as the standard deviation of a Gaussian σ) is used 
as a measure of the depth of the scene, then a defocus edge i(x) can be given by 

( ) ( ) ( )0 0, , , , ,i x f x c x y x y σ= ⊗                   (3) 

and ( )
( ) ( )

0 0 3 22 2 2
0 0

1, , , , ,
2

c x y x y
x x y y

σσ
σ

= ⋅
π  − + − + 

       (4) 

where x0 and y0 is the location parameter, σ is the scale parameter, which affects 
the shape of Cauchy distribution dropping from the peak to low. For conveni-
ence and brevity, the following have taken x0 and y0 as 0, and omitted to write. 

3. Edges Defocus Blur Estimate 

A step edge is re-blurred twice using two known Cauchy kernels with scale pa-
rameter σ1, σ2, respectively. Then the ratio between the first re-blurred gradient 
magnitude of the step edge and its second re-blurred version is calculated. The 
ratio is maximum at the edge location. Using the maximum value, we can calcu-
late the amount of the defocus blur of an edge. 

For convenience and simplicity, we describe our blur estimation algorithm for 
1D case firstly and then extend it to 2D image. The gradient of the first re-blurred 
edges is 

( ) ( ) ( )( ) ( )( ) ( )( ) ( ){ }1 1 1, , , .i x i x c x Au x B c x c xσ σ σ ∇ = ∇ ⊗ = ∇ + ⊗ ⊗    (5) 

Depending on the nature of convolution, the Equation (5) can be rewritten as 

( ) ( )( ) ( ) ( ){ }1 1[ ] , ,i x A u x B c x c xσ σ ∇ = ∇ + ⊗ ⊗  .          (6) 

We know that the derivative of the unit step function is a unit impulse func-
tion ( )xδ , then (6) becomes 
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( ) ( ) ( ) ( ){ }1 1, ,i x A x c x c xδ σ σ∇ = ⊗ ⊗ .               (7) 

Take the Fourier transform of both sides 

( ) ( ) ( ) ( )
( ) ( )

1 1

1

, ,

, , .

i x A x c x c x

A c x c x

σ σ

σ σ

∇ = ⋅ ⋅              
= ⋅ ⋅      

   

 
         (8) 

Since ( ) 2 2

1,c x
x
σσ
σ

= ⋅
π +

, and ( ) 1
1 2 2

1

1,c x
x
σ

σ
σ

= ⋅
π +

, so that 

( ) ( ) 1
2 2 2 2

1

1 1, ,c x c x A
x x

σσσ σ
σ σ

  ⋅ = ⋅ ⋅ ⋅ ⋅          π π+ +   
         (9) 

According to the Fourier pair, 2 2

2e a x a
a ω

− ↔
+

 [22], and the symmetry of 

the Fourier transform, we can get 

2 2

2 2 e aa
a x

ω−↔ π
+

.                      (10) 

Following the linear properties of the Fourier transform, the two Fourier 
transform terms on the right side of Equation (9) are given as follows 

2 2

1 e
x

σ ωσ
σ

− ⋅ = π + 
 , and 11

2 2
1

1 e
x

σ ωσ
σ

− 
⋅ = π + 

 .       (11) 

By substituting (11) into (9), we get 

( ) ( ) ( )1
1, , ec x c x σ σ ωσ σ − +⋅ =        .              (12) 

Substituting (12) into Equation (8), there are 

( ) ( )1
1 ei x A σ σ ω− +∇ = ⋅   .                   (13) 

After performing the inverse Fourier transform of (13), we can get 

( )
( )

1
1 22

1

2Ai x
x

σ σ
σ σ
+

∇ = ⋅
π + +

.                  (14) 

Similarly, we can get the second re-blurred gradient magnitude of the step 
edge 

( ) ( ) ( )( )
( )

2
2 2 22

2

2, Ai x i x c x
x

σ σ
σ

σ σ
+

∇ = ∇ ⊗ = ⋅
π + +

,         (15) 

where σ is the original image of the scale parameter for the Cauchy distribution 
function; σ1 and σ2 are two re-blurred scale parameters. The gradient magnitude 
ratio between the twice re-blurred edges R is 

( )
( )
( )

( )
( )

22
1 21

22
22 1

0
0

i x
R x

i x

σ σσ σ
σ σ σ σ

 ∇ + ++
= = ⋅  

+∇ + +  
            (16) 

It can be proved that the ratio ( )R x  is maximum at the edge location (x = 
0), assumed 1 2, , 0σ σ σ >  and 1 2σ σ< . The maximum value Rmax is given by 
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( )
( )

1 2
max

12

0
.

0
i

R
i

σ σ
σ σ

∇ +
= =

+∇
                   (17) 

Thus, given the maximum Rmax and let 1 2σ σ< , the unknown blur amount σ 
can be calculated by 

2 max 1

max

.
1

R
R

σ σ
σ

−
=

−
                       (18) 

In order to achieve a 2D image blur estimation, we use 2D isotropic Cauchy 
distribution function to re-blur the input image, and blur estimation is similar to 
1D case. In the 2D image, the gradient magnitude can be calculated as follows: 

( ) 2 2, x yi x y i i∇ = ∇ +∇ ,                   (19) 

where xi∇  and yi∇  are gradient in x and y directions. 

4. The Whole Scene Depth Map Extraction 

After obtaining edge position blur amount estimation, we get a sparse depth es-
timation map ( )d̂ x . In order to get the full depth map ( )d x  of the entire 
image, we need to propagate the sparse depth estimation map ( )d̂ x  from edge 
locations to the entire image. To achieve this and compare with other PSF mod-
el, we apply the matting Laplacian to perform the defocus map interpolation, 
same as [16]. Formally, the depth interpolation problem can be formulated as 
minimizing the following cost function: 

ˆDdd
L D
λ
λ

=
+

                         (20) 

Here, d̂  and d are sparse depth map vector representation of ( )d̂ x  and 
full depth map ( )d x . D is a diagonal matrix, λ is the balance parameter, L is a 
matting Laplacian matrix. For the detailed explanation of the expansion process 
and parameters, readers can refer to [16]. 

5. Results 

We test the proposed method on a PC with a 2.5 GHz Intel Core i5 Processor. As 
for contrastive comparison, the Zhuo and Sim’s method [16] and Fang et al. 
method [17] are used to calculate the blur map for the same images. 

The different steps of our proposed algorithm for the white flower image are 
displayed in Figure 2. The color in each color bar changed continuously from 
blue to red represents a number of small to large, also represents the depth from 
near to far (the same figure). The foreground objects in the white flower image 
are three white flowers. The focus point is on the white petals on the bottom of 
the image. The depth of the scene changes continuously from the bottom to the 
top of the image. As shown in Figure 2, the sparse depth map (Figure 2(d)) 
gives an accurate and reasonable measure of amount of edge blur. The depth 
map (Figure 2(e)) accurately captures the continuous change of the depth in 
this scene image. The foreground and background are well separated. 
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As shown in Figure 3, we compare our method with the Zhuo et al.’s method 
[16]. Both methods generate reasonable layered depth maps. The depth map re-
flects the continuous change of the depth. In the building image, there are 
mainly 3 depth layers in the scene: the wall in the nearest layer, the buildings in 
the middle layer, and the sky in the farthest layer. However, our method has 
higher accuracy in local estimation and thus, our depth map captures more de-
tails of the depth in Figure 3(c). As shown in the figure, the difference in the 
depth of the left and right arms can be perceived in our result. In contrast, the 
Zhuo et al.’s method does not recover this depth difference in Figure 3(b). 

 

 
Figure 2. The different steps of our proposed algorithm for the white flower image. (a) Input image; (b) Edge; (c) Ratio of gra-
dient; (d) Sparse depth map; (e) Full depth map. 
 

 
Figure 3. Comparison of our method with the Zhou’s method in some different scenes. 
(a) Input image; (b) Zhou’s result; (c) Our result. 
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In Figure 4, we test our method on the pumpkin image, and compare our 
method with both Zhuo et al.’s method [16] and Fang et al.’s method [17]. In the 
Pumpkin image (Figure 4(a)), the depth of the scene changes continuously from 
the bottom to the top of the image. Our method is able to produce defocus maps 
corresponding to those layers. As shown in Figures 4(b)-(d), we see that, the 
result of Zhuo et al. is a grayscale image, its intensity changes gradation from 
black to white, represents the depth changing from near to far. In the color im-
ages, the meaning of the color is same as the former. All three methods can gen-
erate a reasonable layered depth map. But Zhuo’s result at the strong edge ap-
peared estimation error, as shown in Figure 4(b), the stem of the pumpkin at 
the left side of the middle in this scene. The depth estimation there is a signifi-
cant error. As shown in Figure 4(c), the method of Fang et al. eliminates the es-
timation error of Zhuo et al.’s method, but the shape of objects in the scene do 
not be recognized, and the depth layer changes also significantly rough. In con-
trast, our method is able to produce a more accurate and continuous defocus 
map. The proposed method not only identifies the shape of pumpkins, but also 
more accurately restored both objects and a detail continuously change in this 
scene. 

A comparison of our method with the focal stack method [23] is shown in 
Figure 5. Depth recovery from this image is quite challenging due to the com-
plex structure of the scene. The focal stack method uses 14 images with different  

 

 
Figure 4. Comparison of our method with both the Zhou’s and Fang’s method. (a) Input image; (b) Zhou’s result; (c) 
Fang’s result; (d) Our result. 

 

 
Figure 5. Comparison of our method and focal stack method. (a) Input image; (b) The result of 
focal stack method; (c) Our result. 
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focus settings to produce the layered depth map. Our method is able to generate 
a comparable result using just one of the 14 images. 

6. Conclusion 

In this paper, we presented a new method to calculate the blur amount at edge 
locations based on the Cauchy gradient ratio. A full defocus map is then pro-
duced using the matting interpolation. Experimental results on some real images 
show that our method can accurately recovery depth from an un-calibrated sin-
gle defocused image. It demonstrates that our method is robust to noise, inaccu-
rate edge location and interferences of neighboring edges and is able to generate 
more accurate defocus maps compared with existing Gaussian based PSF me-
thods. It also shows the non-Gaussian PSF Model is feasibility as that is pointed 
out by Ens [18] and Subbarao [19]. In the future, we would like to extend our 
method to recover depth by combining our method with other monocular cues, 
e.g., geometric cues or textures change etc. to further improve the accuracy of 
the depth recovery. 
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